
Publ. Astron. Soc. Japan (2018) 00(0), 1–27
doi: 10.1093/pasj/xxx000

1

Magnetohydrodynamics in a Cylindrical
Shearing Box
Takeru K. Suzuki1,2, Tetsuo Taki3,1, & Scott S. Suriano1

1Graduate School of Arts & Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro, Tokyo
153-8902, Japan ;

2 Department of Astronomy, The University of Tokyo, 7-3-1, Hongo, Bunkyo, Tokyo 113-0033,
Japan

3 Center for Computational Astrophysics, National Astronomical Observatory of Japan,
2-21-1, Osawa, Mitaka, 181-8588, Japan

∗E-mail: stakeru@ea.c.u-tokyo.ac.jp

Received ; Accepted

Abstract
We develop a framework for magnetohydrodynamical (MHD) simulations in a local cylindri-
cal shearing box by extending the formulation of the Cartesian shearing box. We construct
shearing-periodic conditions at the radial boundaries of a simulation box from the conservation
relations of the basic MHD equations. We demonstrate quasi-steady mass accretion, which
cannot be handled by the standard Cartesian shearing box model, with an ideal MHD simula-
tion in a vertically unstratified cylindrical shearing box up to 200 rotations with (i) net vertical
magnetic flux, (ii) a locally isothermal equation of state, and (iii) a sub-Keplerian equilibrium ro-
tation. Inward mass accretion is induced to balance with the outward angular momentum flux
of the MHD turbulence triggered by the magnetorotational instability in a self-consistent man-
ner. We discuss detailed physical properties of the saturated magnetic field, in comparison to
the results of a Cartesian shearing box simulation.
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1 Introduction

Accretion disks are ubiquitously formed around gravita-

tional objects such as black holes, neutron stars, white

dwarfs, and pre-main-sequence stars. Material in the in-

ner part of a disk accretes onto a central object. In or-

der to induce the mass accretion, the angular momentum

has to be transported outward (Lynden-Bell & Pringle

1974). The molecular viscosity is insufficient to account

for the required transport rate of angular momentum,

because the Reynolds number of astrophysical objects is

huge. Therefore, macroscopic processes should operate in

order to trigger mass accretion.

(Magneto)hydrodynamical ((M)HD hereafter) turbu-

lence has been highlighted, because it works as an ef-

fective viscosity to transport angular momentum (e.g.,

Balbus & Hawley 1991, 1998; Blackman & Nauman 2015).

Magnetized disk winds, which remove angular momentum

from a disk in the vertical direction, have also been widely

discussed (Blandford & Payne 1982; Pelletier & Pudritz

1992). Since these processes involve nonlinear phenom-

ena, MHD simulations have been performed to investigate

the transfer of mass and angular momentum (e.g., Hawley

2000; Machida et al. 2000; Penna et al. 2010; Li et al. 2011;

Parkin & Bicknell 2013; Tomida et al. 2015; Takasao et al.

2018; Suriano et al. 2019).

Local shearing box simulations have been widely

used to examine fine-scale MHD turbulence excited by
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the magnetorotational instability (MRI; Velikhov 1959;

Chandrasekhar 1961; Balbus & Hawley 1991) by zoom-

ing in on a local patch of an accretion disk (Hawley et al.

1995; Matsumoto & Tajima 1995). By taking into account

vertical stratification (Brandenburg et al. 1995; Stone et al.

1996) the local treatment is applied to studying the satu-

ration of amplified magnetic fields (e.g., Sano et al. 2004;

Fromang & Papaloizou 2007; Davis et al. 2010), driving

vertical outflows and disk winds (Suzuki & Inutsuka 2009;

Bai & Stone 2013a; Fromang et al. 2013; Lesur et al. 2013)

and heating coronae (Miller & Stone 2000; Io & Suzuki

2014). It has been also extended further by including var-

ious physical processes of radiative effects (Turner et al.

2003; Hirose et al. 2006; Jiang et al. 2013), dynamics of

dust grains (Johansen et al. 2006; Taki et al. 2016), non-

ideal MHD effects (Sano & Stone 2002; Sano et al. 2004;

Turner et al. 2007; Okuzumi & Hirose 2012; Bai & Stone

2013b; Simon et al. 2015), and acceleration of high-energy

particles (Hoshino 2015; Kimura et al. 2016) in various

types of accretion disks. The local approach does not only

apply to accretion disks but also to proto-neutron stars

that are formed through core-collapse supernovae (Masada

et al. 2012; Rembiasz et al. 2016).

Thus, this local approach has achieved great successes

in various applications. However, this does not mean that

the local shearing box is a perfect approach. In the shear-

ing box approximation, the focus is small-scale phenom-

ena, which the curvature of a disk can be neglected, and

local Cartesian coordinates are adopted. A simulation box

rotates with the equilibrium rotation velocity at the ori-

gin of the box, and the radial direction is usually taken

as the x axis. The Cartesian shearing coordinates have a

strict symmetry across the x = 0 plane. While a central

object is usually put in the −x region, it would be correct

to regard that central object as actually located in the +x

region of the same simulation, because there is no preferred

direction with respect to the x axis.

Therefore, mass accretion cannot be directly captured

in the Cartesian shearing box; the integrated net mass flux

across both ends of the x boundaries should be strictly zero

in a well constructed Cartesian shearing box simulation.

The mass accretion rate cannot be measured directly from

these simulations but instead it is estimated from the xy

(radial-azimuthal) component of a stress tensor based on

the balance of angular momentum flux (see Sub-subsection

4.2.3).

It is key to take into account the curvature of the disk

to break the ±x symmetry for a more realistic treatment.

Brandenburg et al. (1996) restored the terms arising from

the curvature in their Cartesian box simulation and re-

ported that it actually realized net mass accretion. Klahr

& Bodenheimer (2003) introduced a framework of shearing

disks for their radiation HD simulation in spherical coor-

dinates, in which shearing periodic conditions are applied

with explicit radial dependences of physical quantities at

the radial boundaries of a simulation box. Based on this

framework, Obergaulinger et al. (2009) performed semi-

global MHD simulations in cylindrical coordinates for the

MRI in core-collapse supernovae. While their works turned

out to be great steps forward, the numerical implementa-

tion is not still well matured; at the moment “damping

zones” need to be prepared at the radial boundaries to

suppress troublesome oscillatory behavior of a simulation

box.

We extend the basic strategy of the shearing disk by

utilizing the basis conservation relations of mass, momen-

tum, energy, and magnetic field in an explicit manner.

We directly apply them to shearing periodic conditions

at the radial boundaries of a local cylindrical simulation

box. Without prescribing a damping treatment at the ra-

dial boundaries, our simulation naturally realizes the mass

accretion that is balanced with the outwardly transported

angular momentum by MHD turbulence. We successfully

incorporate the global effects, while keeping the merits of

the local approach that can capture fine-scale turbulence

in simulations that remain stable over long timescales.

We present the formulation of cylindrical shearing box

simulations in Section 2. The numerical implementation

is described in Section 3 and Appendix 3. We demon-

strate one case of the simulation up to 200 rotation peri-

ods, in comparison to results of a Cartesian shearing box,

in Section 4. We discuss several future directions of our

framework in Section 5 and summarize the paper in Section

6.

2 Cylindrical Shearing Box

2.1 Basic Equations

We perform an MHD simulation in cylindrical coordinates,

(R,ϕ,z), with the rotation axis along the z direction. The

simulation box covers a region of (R− ≤R≤R+,ϕ− ≤ ϕ≤
ϕ+, z− ≤ z ≤ z+) and rotates with the equilibrium rota-

tion frequency, Ωeq,0 = Ωeq,0ẑ, at R = R0 (see eqs.33 &

35), where the “hat” stands for a unit vector. We usu-

ally take R− <R0 <R+ but R0 does not necessarily equal

(R− +R+)/2. We restrict our simulation to regions near

the midplane and neglect the vertical component of the

gravity in this paper. We solve MHD evolutionary equa-

tions,

dρ

dt
+ ρ∇ ·v = 0, (1)
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ρ
dv

dt
=−∇

(
p+

B2

8π

)
+
(
B

4π
·∇

)
B− ρ

GM⋆

R2
R̂

+ρRΩ2
eq,0 − 2ρΩeq,0×v (2)

and

∂B

∂t
=∇× (v×B), (3)

under a constraint equation of

∇·B = 0, (4)

with an isothermal equation of state,

p= ρc2s , (5)

in the frame that rotates with Ωeq,0. Here, ρ, p, v, and

B are density, gas pressure, velocity, and magnetic field,

G is the gravitational constant, M⋆ is the mass of a cen-

tral star, and cs is isothermal sound speed. d
dt

and ∂
∂t

denote Lagrangian and Eulerian time derivatives, respec-

tively. We adopt a locally isothermal approximation: cs

depends only on spacial locations and does not evolve with

time (see Section 3 for the detail). We describe the numer-

ical implementation of the gravity, the centrifugal force,

and the Coriolis force in the radial momentum equation in

Appendix 1.

The velocity measured in this corotating frame, v is

related to the velocity measured in the rest frame, u, via

v = u−RΩeq,0ϕ̂, (6)

and therefore, the azimuthal velocity in the corotating

frame is expressed as

vϕ =R(Ω−Ωeq,0), (7)

where Ω(R) = Ωẑ is the angular velocity measured from

the rest frame.

2.2 Shearing Boundary Condition in Cylindrical
Coordinates

A key in our framework of the cylindrical shearing box

is how to prescribe the shearing condition at the radial

boundaries. We basically extend the shearing condition

for Cartesian coordinates (Hawley et al. 1995) to cylindri-

cal coordinates. In order to do so, we calculate the shear

between R− and R+ by the angular difference, which gives

the following shearing periodic boundary condition for a

variable, S:

S(R±,ϕ,z) = S(R∓,ϕ− (Ωeq,± −Ωeq,∓)t,z)

= S(R∓,ϕ±∆Ωeqt,z), (8)

where Ωeq,− (Ωeq,+) is the equilibrium angular speed at

the inner (outer) radial boundary, R− (R+), and ∆Ωeq =

Ωeq,− −Ωeq,+, which is positive for inner fast rotation.

We need to carefully select shearing variables, S, from

the conservation laws of mass, momentum, energy, and

magnetic field. Although the condition of the energy is

not necessary in the present paper because we assume the

locally isothermal equation of state (eq.5), we present the

formalism for the energy conservation for completeness.

Conservative forms of the basic equations are presented

in Appendix 2.1. Radial differential terms in these equa-

tions should be treated with a special care for the shearing

periodic boundary condition.

Mass

The first shearing variable is from the continuity equation

(eqs. 1 and A5):

Smass = ρvRR, (9)

which conserves the total mass in the simulation box.

Radial Momentum

The conservation of radial momentum can be realized by

using radial differential terms in eq.(A6) of Appendix 1.

However, we do not impose the strict conservation on the

radial momentum flux in order to handle net mass accre-

tion. We start our simulation from the equilibrium profile

described in Subsection 3.1, which indicates that the initial

net radial momentum flux is zero. Therefore, if we impose

the conservation of the total radial momentum flux in the

simulation box, mass accretion cannot be induced, which

is not the purpose of the present work.

In order to handle mass accretion, we loosen the con-

servation condition. In the shearing variable of the radial

momentum flux we do not take into account the curvature

term, u2
ϕ/R, of eq.(A6) in the rest frame, which mostly cor-

responds to the centrifugal force in the corotating frame.

The centrifugal force is a dominant term in the radial force

balance, in addition to the gravity and the pressure gradi-

ent force. When the azimuthal velocity is decelerated, the

inward flow of gas is triggered. We determine the shearing

condition of vϕ from the angular momentum flux in order

that net accretion is realized, which is described later.

Also, we do not consider the terms concerning B in

eq.(A6) in the shearing variables because the contribution

from these terms are not so significant (However, they may

affect long-time behavior; see Appendix 3 for the detail).

We use the radial dynamical pressure as a simple choice:

Smom,R = ρv2RR, (10)

In this setup, radial gas motion is not excited by the dy-

namical pressure but mainly by the change of angular mo-

mentum and a small contribution from the magnetic pres-
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sure.

Angular Momentum

Angular momentum flux directed to the radial direction is

expressed as

LRϕ =
(
ρuRuϕ − 1

4π
BRBϕ

)
R

= ρvRR(RΩeq)+
(
ρvRδvϕ − 1

4π
BRBϕ

)
R

≡ ρvRR(RΩeq)+wRϕR (11)

in the rest frame (see eq.A7), where

δvϕ = vϕ − vϕ,eq (12)

is the difference of vϕ from the local equilibrium azimuthal

velocity, vϕ,eq =R(Ωeq −Ωeq,0), and

wRϕ = ρvRδvϕ − 1

4π
BRBϕ (13)

is the Rϕ component of MHD stress tensor. wRϕ is of-

ten discussed in terms of the α prescription (Shakura &

Sunyaev 1973) as wRϕ = αρc2s .

The first term on the right-hand side denotes the an-

gular momentum advected by radial mass flow, and the

second term corresponds to the angular momentum trans-

ported by MHD turbulence. When the mass accretes

inward by the outward transport of angular momentum

by turbulence as in standard accretion disks (Shakura &

Sunyaev 1973), the first term is negative and the second

term is positive.

The difference between LRϕR at R− and LRϕR at R+

determines the variation of the total angular momentum

in the simulation box (eq.A7). If (LRϕR)+ = (LRϕR)− is

imposed, the total angular momentum is conserved. In

this case the radial force balance is maintained because

the centrifugal force, which balances with the gravity and

the pressure gradient force, does not change with time.

Therefore, if (LRϕR)+ = (LRϕR)− is applied, mass does

not accrete, which is not what we want to model.

We allow the change of the total angular momentum

in order to generate net mass accretion. However, after

the magnetic field is amplified to be in the quasi-saturated

state, time-steady mass accretion should be realized. In

order to fulfill these conflicting demands, we will have

to prescribe a shearing boundary condition that satisfies

(LRϕ)+ ≈ (LRϕ)− after the saturated state is achieved,

while we have to loosen the strict conservation constraint,

(LRϕR)+ = (LRϕR)−.

The first term on the right-hand side, ρvRR(RΩeq),

has a negative value and is proportional to (RΩeq) in the

steady accretion phase, ρvRR(< 0) = const. (eq.9). On

the other hand, the second term, wRϕR, is positive, and if

wRϕR =−ρvRR(RΩeq) at R = R±, the gas in the simula-

tion box does neither gains nor loses angular momentum.

Based on this consideration, we adopt a shearing vari-

able for the angular momentum,

Smom,ϕ = wRϕ/Ωeq. (14)

Although this choice allows the gain or loss of the an-

gular momentum, in the steady-state accreting phase of

ρvRR =const., it gives wRϕR
2 & LRϕR ∝ R2Ωeq (eq.11).

We note that |LRϕR| is an increasing function of R because

specific angular momentum, R2Ωeq, increases with R. (If

this is not satisfied, the system is dynamically unstable,

since it breaks the Rayleigh’s stability criterion.)

Let us consider a case in which LRϕR is negative. In this

case the total angular momentum increases because the

angular momentum that flows out of R− is smaller than

the incoming angular momentum from R+. As a result,

the mass accretion is eventually reduced (vR increases),

which increases LRϕR. On the other hand, if LRϕR is

positive, the total angular momentum decreases because

the angular momentum that flows out of R+ is larger than

the incoming angular momentum from R−. Hence, mass

accretion is eventually increased (vR decreases), and LRϕR

declines.

We expect that the choice of eq.(14) leads to LRϕR≈ 0

in a self-regulating manner after the different components

of LRϕR are canceled out. However, this argument is based

on our theoretical consideration, and hence, we have to

check whether this self-regulation is actually realized by

numerical simulation.

We describe our specific method for how to numerically

prescribe the shearing condition of Smom,ϕ in Appendix

3.2. In short, we assume both the Reynolds and Maxwell

stresses have the same scaling on R, ρvRδvϕ ∝ Ωeq and

BRBϕ ∝ Ωeq. The condition for the Reynolds stress gives

δvϕ ∝RΩeq (15)

for the constraint of mass conservation, ρvR ∝R−1 (eq.9).

Vertical Momentum

The shearing condition for vertical velocity is obtained

from the radial differential terms of eq.(A8). Here, we

use the only HD term and neglect the magnetic effect

(∂R(BRBzR)), because the latter is generally small in the

unstratified setting. We use

Smom,z = ρvRvzR. (16)

as a shearing variable for the vertical momentum.
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Magnetic Field

Similarly to the HD variables, the radial differential terms

of the induction equation should be used as shearing vari-

ables, which are the z component of induction electric field,

SBϕ = Ez = vRBϕ − vϕBR, (17)

in the evolutionary equation of Bϕ (eq.A10), and the ϕ

component of induction electric field,

SBz =REϕ =R(vzBR − vRBz), (18)

in the evolutionary equation of Bz (eq.A11). Here, we note

that the induction equations in the corotating frame can

be derived by replacing uϕ with vϕ of eqs.(A9) – (A11)

in the rest frame (see Appendix 2.2). Besides these two

shearing variables, the constraint equation (4) determines

the three components of magnetic field.

Energy

The radial differential term of the total energy equa-

tion (A13) can be used as a shearing variable for energy.

Because the contribution from magnetic field is usually

small,

Seng = ρvRR

[
v2

2
+ (γ− 1)e

]
(19)

can be a reasonable shearing variable, where γ is the ratio

of specific heats and we used the relation, p= (γ− 1)ρe.

However, as we stated above, we assume that the gas

is locally isothermal (see Section 3 for the detail) and we

do not solve the energy equation. Therefore, we do not

use Seng for the radial shearing boundary condition in this

paper.

Summary of Shearing Variables

We set up the seven shearing variables, eqs.(9), (10), (14)–

(19). The eight primitive variables, ρ, v, B, and e for

the shearing periodic condition are in principle determined

by these seven conditions and the constraint of ∇·B =

0 (eq.4). A specific implementation method needs to be

carefully constructed in order that it is compatible with

an adopted MHD scheme. We describe our method in

Subsection 3.2 and Appendix 3.2.

2.3 Periodic Boudary for ϕ and z Components

We adopt the periodic boundary condition for a variable,

A, at the ϕ and z boundaries, as usually taken in un-

stratifed Cartesian shearing box simulations (Hawley et al.

1995, and more),

A(R,ϕ±,z) =A(R,ϕ∓,z) (20)

and

A(R,ϕ,z±) =A(R,ϕ,z∓). (21)

For the ϕ and z boundaries, we take primitive variables for

A= ρ,v,B, and e.

2.4 Constraints & Conserved Quantities

We can obtain constraints and conserved quantities from

the shearing periodic boundary condition for the R direc-

tion (Subsection 2.2) and the simple periodic boundary

condition for the ϕ and z directions (§2.3). The shearing

condition of Smass (eq.9) ensures the conservation of the

mass in the simulation box

M = [ρ]V =

∫ z+

z−

∫ ϕ+

ϕ−

∫ R+

R−

ρRdRdϕdz = const., (22)

where [· · ·]V ≡
∫
V
dV represents the volumetric integral in

the entire box. The vertical momentum flux integrated in

the box,

[ρvz]V =

∫ z+

z−

∫ ϕ+

ϕ−

∫ R+

R−

(ρvz)RdRdϕdz ≈ 0, (23)

is also an approximately conserved quantities from eq.(16),

provided that the Lorentz force is small.

As we explained in Subsection 2.2, we do not conserve

the integrated radial or angular momentum in order to

handle net mass accretion. Instead, we can derive the

equations that describe epicyclic oscillations, similarly to

those obtained in the Cartesian coordinates (e.g., Hawley

et al. 1995). If we neglect the magnetic terms, by integrat-

ing the R and ϕ components of eq.(2) we approximately

have

∂

∂t
[ρvR]V ≈ 2Ωeq,0[ρδvϕ]V (24)

and

∂

∂t
[ρδvϕR]V ≈−1

2
Ωeq,0[ρvRR]V , , (25)

where we assumed that Ωeq(R) is roughly proportional

to R−3/2, which is valid for the thin disk condition (see

Section 3). The detailed derivations of eqs.(24) & (25) are

described in Appendix 4.

The periodic ϕ and z boundaries guarantee the conser-

vation of the radial magnetic flux,

ΦR =

∫ z+

z−

∫ ϕ+

ϕ−

BRRdϕdz, (26)

at any R plane, which is independent from the radial shear-

ing boundary.

The azimuthal magnetic flux,

Φϕ =

∫ z+

z−

∫ R+

R−

BϕdRdz, (27)

is conserved from eq.(17) at shearing planes, which are
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defined at ϕ= (Ωeq(R)−Ωeq,0)t.

The shearing condition of SBz (eq.18) conserves the ver-

tical magnetic flux,

Φz =

∫ ϕ+

ϕ−

∫ R+

R−

BzRdRdϕ, (28)

at any z plane.

3 Simulation Setup
We do not solve the energy equation (eq.A13) but assume

an isothermal equation of state (eq.5). On the other hand,

we explicitly consider the radial dependence of tempera-

ture (∝ c2s ) in a power-law manner with a constant index,

qT,

c2s = c2s,0

(
R

R0

)−qT

. (29)

This temperature profile is preserved during the simulation

for the locally isothermal assumption.

We consider a thin disk condition with the sound speed,

cs,0 =0.1R0ΩK, at R=R0. The scale height at R=R0 can

be defined as H0 = cs,0/ΩK, which gives H0/R0 = 0.1.

The MHD simulation is performed in a vertically un-

stratified cylindrical shearing box, by neglecting the verti-

cal component of the gravity of a central star (eq.2). To

be consistent with this approximation, we focus on a re-

gion near the midplane and adopt a small vertical box size,

Lz = 0.1R0 =H0.

We set up a larger radial box size, LR = 0.4R0 = 4H0.

The radial spacing, ∆R, of grid cells is prepared in propor-

tion to R. We use the same number of radial grid points

(= 128) inside and outside R = R0. These settings give a

radial box covering R− = 0.82R0 to R+ = 1.22R0.

We adopt π/6 for the azimuthal extent of the simula-

tion box. The azimuthal length at R = R0 of this case

is Lϕ = (5π/3)H0 ≈ 5.2H0. We also perform a simulation

in a Cartesian shearing box with the same box size to this

cylindrical case to inspect the effect of the different geome-

tries.

We resolve H0 by 64 grid points in the R and z compo-

nents. A slightly lower resolution (49/H0) is used for the ϕ

component. We summarize these parameters of the cylin-

drical and Cartesian shearing box simulations in Tables 1

and 2, respectively.

We adopt the 2nd order Godunov + CMoCCT method

to update the physical variables (Sano et al. 1999). In this

scheme, we split the time-updating procedure into com-

pressible and incompressible parts; in the former we solve

the hydrodynamics with magnetic pressure by the non-

linear Godunov method; in the latter we solve magnetic

tension force by the consistent method of characteristics

(Clarke 1996, CMoC) with the constrained transport (CT)

to ensure ∇·B = 0 (Evans & Hawley 1988).

3.1 Initial Condition

We set up power-law dependencies of the initial density

and vertical magnetic field on R:

ρinit = ρ0,init

(
R

R0

)−qρ

, (30)

and

Bz,init =Bz,0,init

(
R

R0

)−qB

, (31)

where the other components of magnetic field are zero,

BR =Bϕ =0. We add random velocity perturbations with

10−4cs to the R and ϕ components of the equilibrium ve-

locity distribution, vR = vz = 0 and vϕ = R(Ωeq −Ωeq,0),

which eventually trigger the MRI.

The initial plasma β value is set to a constant,

βz,init = 8πρc2s/B
2
z,init = 103, (32)

in the entire simulation box; this can be realized when

the adopted power-law indices (eqs.29, 30, & 31) satisfy

2qB = qρ + qT .

The equilibrium profile of the angular frequency, Ωeq,

is derived from the radial force balance,

RΩ2
eq −

GM⋆

R2
− 1

ρ

∂p

∂R
= 0, (33)

where we neglected the effect of magnetic pressure by Bz

because we put very weak initial fields in our simulation.

Because of the pressure-gradient force, Ωeq deviates from

the Keplerian frequency, ΩK =

√
GM⋆
R3 . For a positive qρ+

qT , the equilibrium rotation is sub-Keplerian, Ωeq < ΩK,

and we define a sub-Keplerian parameter (e.g., Nakagawa

et al. 1986),

η =−1

ρ

dp

dR

/
2RΩ2

K =
(qρ + qT )c

2
s

2R2Ω2
K

. (34)

Substituting eq.(34) into eq.(33), we obtain

Ωeq =ΩK

√
1− 2η. (35)

The demonstrated simulation in this paper is the case

with the radial temperature gradient qT =1 and the initial

profile of density, qρ=1, and vertical magnetic field, qB =1

(Table 3). These power-law indices give the same radial

scaling of the sound velocity, the Alfvén velocity (vA,z,init=

Bz,init/
√
4πρ), and the Keplerian velocity:

cs, vA,z,init, RΩK ∝R−1/2. (36)

The adopted qT and qρ with H0/R0 = 0.1 gives the sub-

Keplerian parameter (eq.34), η ≈ 0.01.
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Cylindrical Shearing Box

βz,init H0/R0 Simulation Region [Box Size] Resolution αM

R ϕ z NR Nϕ Nz (0.92 < R/R0 < 1.12)

103 0.1 0.82R0 − 1.22R0 [4H0] 0−π/6 [(5π/3)H0] ±0.05R0 [H0] 256 256 64 0.106

Table 1. Simulation parameters of the cylindrical case. The last column presents the Maxwell

stress (eq.40) averaged over 50 – 200 rotations in the region of 0.92R < R0 < 1.12R.

Cartesian Shearing Box

βz,init Box Size Resolution αM

x y z Nx Ny Nz (−H0 < x < H0)

103 4H0 (5π/3)H0 H0 256 256 64 0.109

Table 2. Simulation parameters of the Cartesian case. The last column presents the Maxwell

stress (eq.40) averaged over 50 – 200 rotations in the region of −H0 < x < H0.

qT qρ qB

1 1 1

Table 3. Adopted power-law indices.

The wavelength, λmax,init, of the most unstable mode

of the MRI is derived from eqs.(30) and (31) as

λmax,init ≈ 2π

√
16

15

vA,z,init

ΩK

= 0.029R
(
βz,init

103

)−1/2( cs,0
0.1R0ΩK

)
= 0.29H0

(
R

R0

)(
βz,init

103

)−1/2( cs,0
0.1R0ΩK

)
, (37)

where we used the expression of the Keplerian rotation

(Balbus & Hawley 1998), because the equilibrium rota-

tion profile is nearly the Keplerian one with the small sub-

Keplerian index, η ≈ 0.01.

Eq. (37) shows that λmax,init is proportional to R;

λmax,init(R−)≈ 0.24H0 at the inner radial boundary of the

simulation box and λmax,init(R+) ≈ 0.35H0 at the outer

boundary. Lz covers 3-4 times λmax,init, and therefore

λmax,init can be resolved by 16-22 grid points.

3.2 Boundary Conditions

We adopt the simple periodic boundary condition at the ϕ

and z boundaries (Subsection 2.3) and the shearing peri-

odic condition at the R boundaries (Subsection 2.2). For

the ϕ and z components we can simply use the primitive

variables, ρ, v, and B.

In contrast, for the R component we should use the six

shearing variables, eqs.(9), (10), & (16) – (18), in princi-

ple. However, we find ρ, vR, and vz have simple radial

dependencies from eqs.(9), (10), & (16):

ρ∝R−1, (38)

and

vR,vz ∝R0. (39)

We would like to note that eq.(38) is consistent with the

profile of the initial density, qρ = 1.

The other variables, vϕ and the three components of

B, are determined from the three shearing variables, eqs

(14), (17) & (18), and ∇·B = 0 (eq.4). In our simulation

we use staggered meshes for the HD and magnetic field

variables for the constrained transport method (Evans &

Hawley 1988) to ensure ∇·B=0 (eq.4). We describe how

to apply the shearing periodic condition on the staggered

meshes in Appendix 3.2.

3.3 Simulation Units

We adopt the simulation units normalized by R0 =1, ρ0 =

1, and ΩK,0 = 1, where ΩK,0 is the Keplerian rotation fre-

quency at R=R0. The velocity is normalized by R0ΩK,0.

The magnetic field is normalized by R0ΩK,0

√
4πρ0, which

deletes the
√
4π factor in the cgs-Gauss units.

In this paper we conventionally call 2π/ΩK,0 “one rota-

tion” from now on, while in a strict sense, one rotation at

R=R0 is 2π/Ωeq,0(≈ 1.01×2π/ΩK,0) in the sub-Keplerian

background.

4 Results
We run both cylindrical and Cartesian simulations in

Tables 1 and 2 until 200 rotations, t= 200(2π/ΩK,0).

4.1 Time Evolution

Figure 1 shows 3D snapshots of the cylindrical case at

eight different time slices. The evolution at the early

times (= 3 − 4 rotations) exhibits that the MRI starts
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Fig. 1. Time evolution of the cylindrical case. Colors denote density and black lines indicate magnetic field lines. Movie is available at http://ea.c.u-
tokyo.ac.jp/astro/Members/stakeru/research/cylshbx.
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Fig. 2. Time evolution of αM. The left panel focuses on the early times of t < 10(2π/ΩK,0). The black dot-dashed, red solid, and blue dotted lines
respectively indicate the time evolution of inner (0.92R0 < R < 0.94R0), intermediate (R0 < R < 1.02R0), and outer (1.1R0 < R < 1.12R0) regions of
the cylindrical shearing box. The right panel presents the time evolution of a broader region of 0.92R0 < R < 1.12R0 of the cylindrical shearing box by the

red solid line until the end of the simulations at t= 200(2π/ΩK,0). In both panels, the result of the Cartesian case averaged in the region of −H0 < x<H0

is also represented by black dashed lines for comparison.

to grow from inner locations, because the growth rate is

≈ 3
4
ΩK ∝ R−3/2 (Balbus & Hawley 1991) in this nearly

Keplerian rotation condition. At t = 3.45 rotations, the

field lines in R<R0 show channel-mode patterns, although

the outer field lines are still almost straight. At the slightly

later times at t = 4 rotations, the inner region is already

in the nonlinear regime, while the outer region is still

in the linear growth stage of MRI. Inspecting these two

panels, one can also recognize the radial dependence of

λmax,init(∝R) in eq.(37).

The MRI initially excites radial magnetic field from the

vertical field as shown in these two panels. Later on the

toroidal magnetic field is amplified from BR by differential

rotation. As a result, Bϕ dominates the poloidal compo-

nents at and after t = 5 rotations. After t ≳ 20 rotations,

the magnetic field is amplified to the saturated state.

The lower four panels show density perturbations are

also excited in the nonlinear saturation stage. At t = 50

and 197 rotations, the density fluctuations are larger than

those at other times. At t=151 rotations, a density bump

is formed around R≈R0 (see also Figure 3), although the

overall density fluctuations in the entire box is moderately

smaller.

Figure 2 presents the time evolution of the dimension-

less volume averaged Rϕ component of the Maxwell stress,

[αM]R2
R1

=
−
∫ R2

R1
RdR⟨BRBϕ/4π⟩∫ R2

R1
RdR⟨ρc2s ⟩

, (40)

where from now on we define ⟨A⟩ as the ϕ and z integrated

average of some variable, A, at R

⟨A⟩ ≡

∫ z+

z−

∫ ϕ+

ϕ−
dϕdzA∫ z+

z−

∫ ϕ+

ϕ−
dϕdz

. (41)

By changing R1 and R2 in eq.(40), we compare αM in

different regions; we set an inner region of 0.92R0 < R <

0.94R0, a middle region of 1R0 <R< 1.02R0, and an outer

region of 1.1R0 <R< 1.12R0.

The left panel shows the growth of αM in these three

different regions of the cylindrical shearing box at the early

time before 10 rotations, in comparison to the result of the

Cartesian box. The increase of αM is faster at smaller R,

because the growth rate of MRI is roughly proportional

to ΩK ∝ R−3/2. The slope of the Cartesian case coincides

with the slope of the middle region (R0 < R < 1.02R0) of

the cylindrical case, as expected. However, the onset time

of the Cartesian case is slightly later. We do not know the

exact reason of this time difference; it is probably because

of the effect of curvature (Latter et al. 2015).

After t≳ 4 rotations, the amplification of the magnetic

field almost saturates. The right panel compares the cylin-

drical and Cartesian cases until the end of the simulation

(=200 rotations). For direct comparison, we picked regions

with the same radial extent of 2H0, 0.92R0 < R < 1.12R0

and −H0 < x < H0, respectively. Although the region of

the radial box is 0.91R0<R<1.11R0 if we choose the same

grid number across R=R0, we slightly shift it outward to

avoid the effect of the inner boundary (see Subsection 5.2).

While both cases exhibit intermittent behavior, the time

averaged values during 50− 200(2π/ΩK,0) are quite simi-

lar; the cylindrical case gives αM=0.106 and the Cartesian

case gives αM = 0.109.
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Fig. 3. Comparison of radial profiles of ϕ and z averaged density (upper
panel) and dimensionless shift of azimuthal velocity from the initial

equilibrium distribution (δvϕ/RΩeq; lower panel) at different times. Black
dotted and black solid lines indicate the initial condition and the time

average from 50 – 200 rotations, respectively. Blue dash-dotted and red
dashed lines denote the snapshots at 50 rotations and 151 rotations,

respectively, where the corresponding 3D snapshots are shown in Figure 1.

4.2 Radial Distribution

We examine time, ϕ, and z averaged radial profiles of var-

ious physical quantities in this subsection. The ϕ and z

averages are taken by eq.(41). We take the time average

from t= 50 to 200 rotations, unless otherwise noted.

4.2.1 ρ & vϕ

The upper panel of Figure 3 compares radial density pro-

files at different times. The time-averaged distribution

(black solid line) shows that the initial profile (black dotted

line) is almost preserved. The deviations from the initial

condition is larger near the inner and outer boundaries.

The gas slightly piles up near both boundaries and the

density there increases about 10% from the initial value

because of boundary effects.

Snapshots at t = 50 (blue dash dotted line) and 151

(red solid line) rotations illustrates that the density distri-

bution considerably varies with time. At t=151 rotations,

one can see a density bump with the density enhancement

by ≈ 15% from the initial condition near R ≈ R0, which

can be also seen in the 3D snapshot (Figure 1). This den-

sity enhancement is a transiently formed zonal flow, which

was also observed in Cartesian shearing box simulations

(Johansen et al. 2009; Simon et al. 2018).

The lower panel of Figure 3 shows how the initial equi-

librium rotational profile is perturbed with time. We

present density weighted δvϕ (eq.12),

⟨δvϕ⟩ρ ≡ ⟨ρδvϕ⟩
⟨ρ⟩ , (42)

which is further normalized by the equilibrium rotational

velocity measured in the laboratory frame.

The time-averaged profile (solid line) shows that the

dimensionless δvϕ is kept small with < 1.5% in the entire

region, while the deviations are larger near the inner and

outer boundaries where the slope of ⟨ρ⟩ changes from the

initial condition. A steeper decrease of gas pressure with R

reduces the rotational velocity near the inner boundary; a

smaller contribution from the centrifugal force is sufficient

to balance with the inward gravity, because of the larger

outward pressure gradient force. Since in our simulation

we assume the locally isothermal condition, the pressure

gradient force is modified only by the change of a density

gradient.

Comparing the δvϕ and ρ profiles, one can find that neg-

ative (positive) δvϕ corresponds to the steeper (shallower)

slope of density. While the two snapshots of δvϕ roughly

show the similar tendency, the detailed structures do not

exactly follow it. This is because the radial force balance

is not always satisfied when the gas moves radially in a

time-dependent manner.

4.2.2 Magnetic Field

Figure 4 presents various quantities of the magnetic field.

The top panel compares the radial profile of net magnetic

flux, ⟨B⟩, to the initial strength of the vertical magnetic

field. We note that ⟨BR⟩ is kept to 0 within the accuracy of

a round-off error in our simulation because of the conser-

vation law of eq.(27), and therefore we only present ⟨Bϕ⟩
(dashed) and ⟨Bz⟩ (solid).

This panel indicates that the initial profile of Bz is

roughly preserved, although moderate pileups of Bz are

seen near both boundaries, which are also formed by the

influence of the radial boundaries, as discussed in the den-

sity distribution (Figure 3).

⟨Bϕ⟩ shows that the initial condition (= 0) is also al-

most conserved. We would like to note that the integrated∫ R+

R−
dRR⟨Bϕ⟩ in the box is strictly 0 in our simulation by

the conservation law of eq.(27) and the periodic condition

at the ϕ boundaries.

The middle panel of Figure 4 presents the three com-

ponents of the root-mean-squared magnetic field,
√

⟨B2⟩,
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Fig. 4. Radial distributions of various time-averaged quantities concerning
the magnetic field. Top: The z (solid) and ϕ (dashed) components of the

net magnetic flux density. The initial profile of Bz is also plotted for
comparison. Note that ⟨BR⟩ is not shown because it is strictly 0 by the
conservation law of eq.(27). Middle: Comparison of the R (solid), ϕ
(dotted), and z (dashed) components of the root-mean-squared B.

Bottom: The inverse of plasma ⟨β⟩ (solid) and the Rϕ component of the
Maxwell stress, ⟨αM⟩ (dashed). The gray dotted lines are those from the

−H0 < x < H0 region of the Cartesian shearing box.

which is generally much larger than ⟨B⟩ by the contribu-

tion from the turbulent component. The toroidal com-

ponent dominates the poloidal (R & z) components be-

cause the differential rotation winds up and amplifies Bϕ,

which is consistent with results obtained in local Cartesian

shearing box simulations (e.g., Hawley et al. 1995; Sano

et al. 2004; Davis et al. 2010) and global simulations

(e.g., Armitage 1998; Hawley 2000; Suzuki & Inutsuka

2014). The relative values in units of magnetic energy is

B2
R :B2

z :B
2
ϕ ≈ 2 : 1 : 10−15 except in the regions near both

boundaries.

The middle panel also shows that
√

⟨B2
ϕ⟩ ∝ 1/R in

0.9R0 ≲ R ≲ 1.15R. This trend is obtained in previous

global simulations (Flock et al. 2011; Suzuki & Inutsuka

2014), which is anticipated from the radial force balance

between magnetic pressure and hoop stress,

− 1

R2

∂

∂R

(
R2B

2
ϕ

8π

)
=− ∂

∂R

(
B2

ϕ

8π

)
−

B2
ϕ

4πR
≈ 0. (43)

Near the radial boundaries,
√

⟨B2
ϕ⟩ is weaker than the

strength expected from this trend. This is because the

differential rotation is weaker there, which corresponds to
∂δvϕ
∂R

> 0 in Figure 3, and therefore the amplification of

magnetic field is suppressed. The poloidal components,

which show a roughly similar radial dependence to that

of Bϕ, are basically controlled by the dominant toroidal

component, whereas they are also affected by the radial

boundaries.

The bottom panel of Figure 4 presents αM (dashed line)

and the inverse of a plasma β value (solid line), which is

defined by the ratio of gas pressure to magnetic pressure.

Again, both quantities are averaged over the ϕ and z com-

ponents:

⟨αM⟩= −⟨BRBϕ/4π⟩
⟨ρc2s ⟩

, (44)

and

⟨β⟩−1 ≡
(⟨B2

R +B2
ϕ +B2

z)/8π⟩
⟨ρc2s ⟩

. (45)

The results of the Cartesian shearing box are also plot-

ted (gray dotted lines) for comparison. Both ⟨β⟩−1 and

⟨αM⟩ show almost flat dependence on R except in the

regions near the boundaries, and their values also agree

with those of the Cartesian case within 10% difference.

⟨β⟩−1≈0.25 in the flat region (0.93R0<R<1.15R0), which

indicates that the magnetic energy (∝B2) is amplified by

250 times from the initial condition, β−1
z,init =10−3 (eq.32).

The magnetic pressure, which is dominated by B2
ϕ/8π,

is proportional to R−2, as shown in the middle panel. This

dependence is the same as that of the gas pressure, since

ρ∝R−1 is adopted at the radial shearing periodic bound-

aries (eq.38) and c2s ∝R−1 is fixed in our locally isothermal

assumption. Therefore, the R−2 dependences of both nu-

merator and denominator of eq.(45) are canceled out so

that ⟨β⟩−1 is nearly a constant on R.

⟨αM⟩ is also a nearly constant but slightly increases with

R in the middle region that is not affected by the bound-

aries. This weak dependence is important in the trans-

port of angular momentum and consequent mass accretion,

which is discussed in the next subsection.

4.2.3 Angular Momentum & Accretion

A great advantage of our cylindrical shearing box approach

to the Cartesian shearing box setup is that we can handle

radial mass accretion directly. In order to realize this, we

do not impose a shearing periodic constraint on the total

angular momentum at the radial boundaries but instead
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Fig. 5. Time evolution of the density weighted and volume averaged vR (solid red lines) and δvϕ (black dashed lines). The left, middle, and right panels
respectively show the initial, intermediate, and final 10 rotations of the simulation.

Fig. 6. Comparison of different components of time-averaged angular
momentum fluxes. The black solid, black dotted, and red dashed lines

respectively show the angular momentum fluxes carried by the Rϕ

component of the Maxwell stress, the turbulent Reynolds stress, and the net
mass accretion. The blue dash-dotted line represents the sum of these

three components.

constrain the turbulent part (see eq.(14) in Subsection 2.2

& Appendix 3). The total angular momentum in the sim-

ulation box is not conserved, and mass accretion or decre-

tion can be automatically induced by the loss or gain of

angular momentum. In other words, we liberate the cen-

ter of mass in the box from a fixed origin and test whether

time-steady mass accretion is actually achieved by the out-

ward transport of angular momentum via excited MHD

turbulence.

Let us examine the time evolution of the radial and an-

gular momentums in the simulation box. Figure 5 presents

the density weighted and volume averaged horizontal ve-

locities, ⟨vR⟩ρ,V and ⟨δvϕ⟩ρ,V , where ⟨v⟩ρ,V ≡ [ρv]V /[ρ]V .

From eqs.(24) and (25) we can derive the solutions that

represent epicyclic oscillations with an arbitrary velocity

amplitude, a:

⟨δvϕ⟩ρ,V ≈ asin(Ωeq,0t+ δ) (46)

⟨vR⟩ρ,V ≈ 2asin
(
Ωeq,0t+ δ− π

2

)
, (47)

where δ is a phase shift. These solutions show that the

phase of ⟨vR⟩ρ,V is delayed by π/2 from that of ⟨δvϕ⟩ρ,V
and the amplitude of ⟨vR⟩ρ,V is twice that of ⟨δvϕ⟩ρ,V

Readers can recognize that the oscillatory behavior of

the horizontal velocities in Figure 5 roughly follow the

characteristics of these epicyclic oscillations, although it

is considerably perturbed from time to time by the mag-

netic field and the curvature effects that are not considered

in the solutions of eqs. (46) and (47). The left panel of

Figure 5 shows that the simulation box starts to oscillate

at t ≳ 3 rotations when the magnetic field is amplified by

the MRI. While ⟨δvϕ⟩ρ,V oscillates around 0, the center of

the oscillation of ⟨vR⟩ρ,V slowly shifts downward; the mass

accretion is gradually induced.

In the middle (95-105 rotations) and right (190-200 ro-

tations) panels, ⟨vR⟩ρ,V does not decrease monotonically

but it oscillates roughly around ≈ 0.001. This indicates

that the mass accretion occurs in a quasi-steady manner,

if we take a time average covering the duration of ≳ 10

rotations. On the other hand, the oscillation of ⟨δvϕ⟩ρ,V
is still kept around ≈ 0 at later times. This clearly shows

that the total angular momentum is almost conserved for

the long-time average. We can conclude that, by utilizing

the shearing variable of the angular momentum, Smom,ϕ,

(eq.14), the time-steady mass accretion can be realized

while keeping the angular momentum in the box conserved,

as we aimed in Subsection 2.2.

Next, we inspect the radial profile of different compo-

nents of angular momentum fluxes when the mass accretes

in a quasi-steady manner. Taking the ϕ and z integrated

average under the periodic boundary condition and assum-

ing the steady-state condition, ∂t · · ·= 0, we can obtain an

equation that describes the balance of angular momentum

fluxes in the laboratory frame ( see eq.A7) as

∂

∂R

[
R2

(
⟨ρvR⟩RΩeq + ⟨ρvRδvϕ⟩−

⟨BRBϕ⟩
4π

)]
= 0, (48)

where the first term indicates the angular momentum flux

carried by net radial flows, the second term is that by the
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turbulent Reynolds stress, and the third term is that by

the Maxwell stress. We note that in the Cartesian shearing

box approach, mass accretion rate, Ṁ , is estimated from

the second and third terms by using this equation,

Ṁ ≡−2π

∫
dzRρvR ≈− 2π

ΩK

∫
dz

⟨
ρvRδvϕ − BRBϕ

4π

⟩
,(49)

even though net ⟨vR⟩=0. Our cylindrical shearing box can

directly test the justification of this conventional approach.

Figure 6 compares the three terms of eq.(48), where the

time averages are again taken from 50 to 200 rotations.

The outward transport of angular momentum is mainly

done by the Maxwell stress (black solid). The turbulent

Reynolds stress (black dotted) also transports angular mo-

mentum outward, however its contribution is ≲ 1/10 times

smaller than that from the Maxwell stress in most of the

simulation region. On the other hand, the sign of the ac-

cretion term is negative, which indicates that the angular

momentum is carried inward by the net mass accretion.

The sum of these three terms (blue dash-dotted line)

is nearly 0; the balance between the outward transport

by the MHD turbulence and the inward transport by the

mass accretion is almost satisfied, and the total angular

momentum is conserved in a self-regulating manner after

the magnetic field is amplified to the saturated state, even

though we do not impose a constraint on the total angular

momentum.

From the conservation law of eq.(9), our simulation

gives ⟨ρvRR⟩ = const. We adopt the nearly Keplerian ro-

tational velocity for the equilibrium state, which roughly

gives Ωeq ∝ R−3/2. These relations leads to the R scaling

of the first term of eq.(48) as R2⟨ρvR⟩RΩeq ∝ R1/2. The

weak radial dependence of the accretion term in Figure 6

reflects this R1/2 scaling. The Maxwell stress also shows

the same dependence of −⟨BRBϕ/4π⟩R2∝R1/2 to balance

with the accretion term. This dependence is consistent

with ⟨αM⟩ ∝ R1/2 in Figure 4, and further implies that

the (dimensional) turbulent viscosity, νM, of the Maxwell

stress has the relation of νM ≈⟨αM⟩csH ≈⟨αM⟩c2s/ΩK ∝R.

4.2.4 Mass Accretion and Radial Transport of Bz

In the previous subsection we have discussed the mass ac-

cretion from a viewpoint of the angular momentum bal-

ance. In this subsection, we further inspect radial flows of

not only mass but also vertical magnetic field. As discussed

in Suzuki & Inutsuka (2014), the radial velocity of the gas

and that of the vertical magnetic fields do not generally

coincide, even if the ideal MHD condition is considered,

because of the turbulent diffusion of magnetic fields. The

radial flow of Bz determines the pileup or diffusion of the

poloidal magnetic field in a disk, and consequently controls

the long-time evolution of the large-scale magnetic field

Fig. 7. Comparison of the radial flows of gas (⟨vR⟩ρ; dashed lines) and
vertical magnetic field (⟨vR⟩Bz = ⟨Eϕ⟩/⟨Bz⟩; solid lines). The thin black
lines are the time average from 50-200 rotations, and the gray lines are the
snapshots at 151 rotations, where we take the average of ± one rotations

for ⟨vR⟩Bz .

(Lubow et al. 1994; Rothstein & Lovelace 2008; Guilet &

Ogilvie 2012; Okuzumi et al. 2014; Takeuchi & Okuzumi

2014).

The radial velocity of gas is taken from the density

weighted average,

⟨vR⟩ρ =
⟨ρvR⟩
⟨ρ⟩ , (50)

where the subscript ρ is put to explicitly show gas flow.

For the radial velocity of Bz, we introduce

⟨vR⟩Bz =−⟨Eϕ⟩
⟨Bz⟩

=
⟨vRBz − vzBR⟩

⟨Bz⟩
, (51)

which is expected from the z component of the induction

equation (eq.3). Taking the ϕ and z integration of the

equation that describes the time variation of Bz, we get

∂⟨Bz⟩
∂t

+
1

R

∂

∂R
[R(−⟨Eϕ⟩)] = 0. (52)

The form of eq.(52) is essentially an equation of continuity

for ⟨Bz⟩, and therefore, we use eq.(51) to follow the radial

motion of ⟨Bz⟩.
Figure 7 compares ⟨vR⟩ρ (dashed) and ⟨vR⟩Bz (solid).

The time averaged gas flow (thin black dashed line) shows

the gas accretes inward with a constant ⟨vR⟩ρ, which is con-

sistent with eq.(39) and the discussion in Sub-subsection

4.2.3.

The time-averaged radial velocity of the vertical mag-

netic field also shows a nearly constant ⟨vR⟩Bz . However,

the inward velocity is slightly faster, ⟨vR⟩Bz < ⟨vR⟩ρ(< 0),

in most of the region except near the inner boundary,

which indicates that the vertical magnetic flux drifts in-

ward through the gas. As discussed above, the magnetic

field is not strictly frozen into the gas, even though the
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ideal MHD condition is imposed on the simulation. The

inward velocity of Bz is decelerated from R = 0.9R0 to

0.85R0, which leads to the pileup of the vertical magnetic

flux, as discussed in Figure 4.

The snapshot profiles of ⟨vR⟩ρ and ⟨vR⟩Bz at t = 151

rotations are also plotted in Figure 7. As for ⟨vR⟩Bz , we

take the average from t = 150 to 152 rotations, because

the pure snapshot gives spuriously huge values at locations

where ⟨Bz⟩ is occasionally ≈ 0.

Both ⟨vR⟩ρ and ⟨vR⟩Bz indicate that the mass accretion

and the inward transport of magnetic flux do not occur

in a time-steady manner. The direction of the gas flow is

inward in the inner side (R≲R0) and outward in the outer

side (R≳R0) at t= 151 rotations because diverging flows

are excited from the density bump that is formed at this

time (Figures 1 & 3).

The snapshot of ⟨vR⟩Bz (gray solid line) largely deviates

from that of ⟨vR⟩ρ (gray dashed line); the radial motion

of Bz drifts from the accreting gas because of turbulent

diffusion and reconnection (Lazarian & Vishniac 1999).

5 Discussion

5.1 Treatment of Radial Boundaries

After the simulation starts from the initial condition of

vR = 0, mass accretion is gradually induced by the excited

MHD turbulence that transports angular momentum out-

ward (Figure 5). We did not impose any constraint on

the mass accretion rate or the angular momentum trans-

port rate. The mass accretion rate is determined by the

balance between the angular momentum fluxes from mass

accretion and MHD turbulence in a self-consistent and self-

regulating manner. Each component of the time-averaged

radial angular momentum flux shows a smooth and mono-

tonic profile in R (Figure 6). The treatment of the radial

boundary condition works well at least for handling the

time-averaged properties of the mass accretion.

However, there are issues concerning the boundary

treatment that should be addressed in future work. The

first point arises from the difference between Ωeq,+ and

Ωeq,− at the R± boundaries. At the linear stage of the

MRI, the magnetic field grows first at the inner boundary

because the growth time (∝Ωeq) is shortest there. A part

of the amplified magnetic field at the inner boundary is

transported to the outer boundary and into the simulation

domain because of the shearing periodic condition (Figure

1), which does not occur in realistic accretion disks. For

this reason, we have to be careful when we focus on spe-

cific phenomena, such as individual channel flows, near the

radial boundaries. On the other hand, we expect that the

radial boundary treatment gives reasonable time-averaged

properties, provided that the appropriate shearing vari-

ables, S, are adopted (Subsection 2.2).

Another possible concern is the propagation of waves

across the radial boundary, which is also related to the

difference between Ωeq,+ and Ωeq,−. We can expand the

basic MHD equations (eqs.1–4) into the mean and fluc-

tuating components, and MHD waves are derived from

the latter component. The current formulation using the

shearing variables focuses only on the mean component

and does not take special care of the fluctuating compo-

nent. Therefore, waves that propagate across the radial

boundary could suffer partial reflection. The treatment of

the fluctuating component should be done as a next step.

5.2 Zonal Flows

The radial distribution of the density exhibits bumps and

dips. Although the amplitudes of the radial density varia-

tions are not so large, they are not erased even for the time

average over 50 – 200 rotations (Figure 3). Because of the

bumpy profile of the density and, accordingly, the pres-

sure, the azimuthal velocity also deviates from the equi-

librium value with δvϕ < 0 (> 0) in regions with a steeper

(shallower) density gradient than the equilibrium gradient.

As a result, the differential rotation is not constant in R.

The toroidal magnetic field is more amplified in the re-

gions with stronger differential rotation,
∂δvϕ
∂R

< 0. As a

result, the unsigned toroidal magnetic field,
√

B2
ϕ, is not a

monotonically decreasing function of R but shows a peak

at R≈ 0.88R0, as discussed in Sub-subsection 4.2.2.

Although the bumpy density structures, or zonal flows,

are created physically (Johansen et al. 2009), they may

be affected by the radial boundaries because the deviation

of ⟨δvϕ⟩ from 0 is larger near both radial boundaries. In

particular, it is more prominent near the inner boundary

because the curvature effect (∝ 1/R) is more severe there.

The partial reflection of propagating waves at the radial

boundary (Subsection 5.1) may cause the bumpy density

structure.

In addition, the numerical implementation may cause

the bumpy density structure. We adopt the CT scheme

to update the magnetic field. The locations of the three

components of the magnetic field are different from that

of the other physical variables. Therefore, interpolation

is required to use the shearing variables with magnetic

fields, which causes truncation errors and numerical dif-

fusion. Our specific implementation method is described

in Appendix 3. Although we carefully chose the interpo-

lation method after much trial and error, it still may not

be a perfect one. More elaborate and innovative methods
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will be explored in future work.

5.3 Radial Dependences and Shearing Variables

In this paper we presented one simulation with a single

set of radial dependences for the density, the temperature,

and the vertical magnetic field strength. The power-law

index of the density, qρ = 1, is required from the shear-

ing conditions for Smass (eq.9) and Smom,r (eq.A6). The

power-law index of the temperature, qT = 1, is chosen to

give cs ∝ R−1/2, which is the same scaling as that of the

equilibrium rotation velocity. The power-law index of the

initial net vertical magnetic flux, qB =1, is regulated from

the adopted qρ and qT to give a constant βz,init.

In general, however, the radial dependences are deter-

mined independently of each other. Therefore, it is worth

pursuing cases with different sets of power-law indices to

study various types of accretion disks, which we plan to

tackle in our future studies.

Among the three power-law indices, qρ needs to be

treated carefully. The adopted qρ=1 is consistent with the

conservation of mass via Smass (eq.9) and radial momen-

tum via Smom,r (eq.10). When a different qρ is adopted,

we cannot satisfy the shearing variables of both Smass and

Smom,r simultaneously, and have to dismiss either one of

then.

It is better to keep Smass rather than Smom,r, because

even in the present formulation the radial momentum

is conserved only in an approximate sense (Subsection

2.2). However, in this case the radial dynamical pres-

sures, (ρv2RR)±, at the R± boundaries are not balanced,

and hence, the simulation box will be accelerated to the +

or −R direction. A prescription to prevent this systematic

acceleration must take into account the magnetic terms

(see eq.A6) in Smom,r.

5.4 Future Applications

Although there is room to improve the treatment of the

radial shearing boundary (Subsection 5.1), the cylindrical

shearing box model has various possible extensions and

applications.

5.4.1 Vertical Stratification

A first extension of the cylindrical shearing box framework

takes into account the stratification of density by the ver-

tical component of the gravity of a central object.

In recent years, vertical outflows and disk winds have

been widely discussed that they play a significant role in

the evolution of protoplanetary disks (Ferreira et al. 2006;

Suzuki et al. 2016; Takahashi & Muto 2018), and they

are studied in vertically stratified Cartesian shearing box

simulations (Suzuki & Inutsuka 2009; Suzuki et al. 2010;

Bai 2013; Bai & Stone 2013a; Lesur et al. 2013; Fromang

et al. 2013; Mori et al. 2019). The magnetic centrifugal

force often plays an important role in driving disk winds

(Blandford & Payne 1982). In addition to MHD turbu-

lence, magnetocentrifugal acceleration that removes an-

gular momentum from a disk causes the accretion of gas

(Pelletier & Pudritz 1992).

In principle it is quite difficult, and probably impossible,

to properly treat the magnetocentrifugal acceleration with

the Cartesian shearing box model because of the ±x sym-

metry (Section 1). The vertical component of the angular

momentum flux is evaluated from the yz component of the

Maxwell and Reynolds stresses in Cartesian coordinates.

However, the sign of the vertical angular momentum flux

is ambiguous because of the ±x symmetry; it is flipped

when the central object is switched from the −x direction

to the +x direction.

In contrast, there is no such ambiguity in the sign of

the angular momentum flux in the cylindrical approach.

The cylindrical shearing box with vertical stratification can

properly evaluate the removal rate of angular momentum

by magnetocentrifugal driven disk winds.

There are some issues that are not present in the

Cartesian shearing box when we include the vertical den-

sity stratification in the cylindrical shearing box. The first

issue is the radial dependence of the scale height. For ex-

ample, we presented the case with H ∝R, which is derived

from qT =1. When we apply the radial shearing boundary

conditions to a vertically stratified box, the radial depen-

dence of H needs to be taken into account in a consistent

way.

Another point is that the equilibrium rotational veloc-

ity generally involves vertical shear (see, e.g. Suzuki &

Inutsuka 2014). The gravity of a central object is weaker at

higher altitudes. Therefore, rotational velocities are usu-

ally slower at higher altitudes for the same R, though this

can be reversed by the contribution from the pressure gra-

dient force. We note that there is an attempt to consider

the vertical shear in the Cartesian shearing box by McNally

& Pessah (2015).

5.4.2 Spherical Coordinates

We can extend our framework of the cylindrical shearing

box to spherical coordinates in a straightforward manner.

When the vertical stratification is taken into account, it

is probably better to adopt spherical coordinates rather

than cylindrical coordinates, as in the “spherical disks” by

Klahr & Bodenheimer (2003), because the disk scale height

usually increases with distance from the origin.
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5.4.3 Physical Processes

In the presented simulation we solved the ideal MHD equa-

tions with a locally isothermal equation of state, which is

the simplest setting for demonstrative purposes. It is pos-

sible to consider various physical processes in the cylin-

drical shearing box as is done in Cartesian shearing box

simulations.

For example, self-gravity can be included in the mo-

mentum equation to study the formation of stars, brown

dwarfs, and planets (Gammie 2001; Hirose & Shi 2019).

To determine realistic temperature distributions in vari-

ous types of disks, radiative cooling and heating should

be considered in the energy equation (Turner et al. 2003;

Hirose et al. 2006; Shi et al. 2010; Jiang et al. 2013). If

the temperature is not high and the ionization is not suf-

ficient, as expected in protoplanetary disks, the magnetic

diffusion by non-ideal MHD effects needs to be taken into

account (Sano & Stone 2002; Bai & Stone 2013b; Kunz &

Lesur 2013; Mohandas & Pessah 2017).

5.4.4 Particles

The shearing box model is also a strong tool to study the

dynamics of particles in accretion disks.

The energization of non-thermal particles in accretion

disks around compact objects has been investigated by

particle-in-cell simulations in Cartesian shearing boxes

(e.g., Hoshino 2015; Kunz et al. 2016). One of the se-

vere problems of using the Cartesian box is the existence

of unphysical runaway particles; once the gyroradius of a

particle exceeds the radial box size, it continuously gains

the energy as a result of acceleration (Kimura et al. 2016).

Therefore, we cannot determine the maximum energy of

the accelerated particles in the Cartesian shearing box

model. In reality, however, the acceleration eventually sat-

urates when the gyroradius becomes comparable to the size

of the system (Kimura et al. 2019). The cylindrical shear-

ing box approach can handle the saturation of the energy

gain because it includes the curvature; the size of the ac-

celeration region is regulated by the curvature radius.

The Cartesian shearing box approach is often adopted

to study the dynamics of dust grains in protoplanetary

disks (e.g., Carballido et al. 2006; Gressel et al. 2012; Zhu

et al. 2015). The pressure gradient force induces the inward

drift of dust grains from the background gas (Adachi et al.

1976). While this radial drift can be taken into account

in the Cartesian shearing box model as an external force

(Johansen et al. 2006), the cylindrical shearing box can

consider it in a self-consistent way, which can be a reliable

method to understand reasonable pathways for the planet

formation (e.g., Kobayashi et al. 2016).

The Cartesian shearing box model also considers larger

bodies in protoplanetary disks, such as planetesimals and

(proto)planets (Nelson & Papaloizou 2004; Yang et al.

2009; Muto et al. 2010; Tanigawa et al. 2012). One of the

targets of this type of simulations is to understand the mi-

gration of (proto)planets. The direction and rate of the mi-

gration are primarily determined by the difference between

the torques exerted by density waves excited from the in-

ner and outer locations of the planet (Tanaka et al. 2002;

Crida & Morbidelli 2007; Baruteau et al. 2014; Kanagawa

et al. 2018). In addition, they are also affected by the ra-

dial flow of the background gas (Ogihara et al. 2017). It

is quite difficult to quantitatively and directly determine

the small difference between the inner and outer torques

from the background gas flow in the Cartesian shearing

box mainly because of the symmetry with respect to the

±x directions. In contrast, our cylindrical approach would

be a powerful tool to solve this problem.

6 Summary

We developed the basic framework of the cylindrical shear-

ing box, focusing on MHD simulations for accretion disks.

We constructed the shearing periodic boundary conditions

at the radial boundaries by utilizing the conservation re-

lations of the basic MHD equations. While the cylindrical

shearing box is basically a local approach, it also takes into

account global effects from the curvature of cylindrical co-

ordinates. One of the great advantages of our treatment is

that we can directly capture the net mass accretion, which

cannot be handled by the Cartesian shearing box treat-

ment because of the radial symmetry.

We performed the MHD simulation in the unstratified

cylindrical shearing box with a moderate resolution that

resolves one scale height by 64 grid points. Inward mass

flows are naturally induced by the outward flux of angular

momentum carried by the MHD turbulence. While the lo-

cal cylindrical simulation box oscillates quasi-periodically

as a result of the epicyclic motion, the total angular mo-

mentum averaged over ≳ 10 rotations is conserved by the

balance between the inward angular momentum flux ad-

vected by the accreting mass and the outward angular mo-

mentum flux by the MHD turbulence. The quasi-time-

steady accretion is realized in our cylindrical shearing box

simulation. The basic physical properties of the excited

MHD turbulence, such as the saturation level of the am-

plified magnetic fields, are similar to those obtained from

the Cartesian shearing box.

While the global effects of curvature are considered, the

cylindrical shearing box framework still has the advantage

of the local approach that (i) fine-scale phenomena of the

turbulence can be resolved by zooming in on a local patch
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of the accretion disk and (ii) long-time simulations can

be performed stably within an acceptable computational

time. Related to the point (ii), it took only ∼ a day for the

presented case with a medium resolution of 64 grids per H0

(Table 1) to run up to 200 rotations on a standard parallel

computer with 512 CPU cores. It would be possible to

perform simulations with a similar resolution up to several

thousand rotations within a realistic computational time.

This could be quite an efficient tool to study long-time

evolution governed by the timescale of diffusion.

It is still not easy to run global simulations for long

times (∼ 103−4 dynamical timescales). Global simulations

usually cover a large dynamic range from a fast rotating

inner region to a slow rotating outer region (e.g., Flock

et al. 2011; Suzuki & Inutsuka 2014). Therefore, in order to

follow several thousand rotations at the region of interest,

usually located at an intermediate region in the simulation

domain, it is necessary to cover larger rotation times at

the inner region, which is not realistic with the current

computational resources.

There is still room to improve the numerical implemen-

tation of the radial shearing boundary condition, in partic-

ular for the treatment of propagating waves. As discussed

in Section 5, the cylindrical shearing box framework has

various applications, which are open to future works by all

those who are interested.
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Appendix 1 Treatment of External Forces
The radial component of the momentum equation, eq.(2), is written as

∂vR
∂t

+ vR
∂vR
∂R

+
vϕ
R

∂vR
∂ϕ

+ vz
∂vR
∂z

−
v2ϕ
R

=−1

ρ

∂

∂R

(
p+

B2
ϕ +B2

z

8π

)
+

Bϕ

4πρR

∂BR

∂ϕ
+

Bz

4πρ

∂BR

∂z
−

B2
ϕ

4πρR
− GM⋆

R2
+RΩ2

eq,0 +2Ωeq,0vϕ. (A1)

The mutual subtraction of the external forces and the curvature term (v2ϕ/R) causes the numerical cancellation of

significant digits. Therefore, it is better to consider the deviation from the equilibrium profile. In the equilibrium state,

the radial force balance

Feq ≡
v2ϕ,eq
R

− 1

ρeq

∂peq
∂R

− GM⋆

R2
+RΩ2

eq,0 +2Ωeq,0vϕ,eq = 0 (A2)

is satisfied, where

− 1

ρeq

∂peq
∂R

= (qρ + qT )
c2s,0
R

(
R

R0

)−qT

. (A3)

Substituting eq.(A2) into eq.(A1), we obtain

∂vR
∂t

+ vR
∂vR
∂R

+
vϕ
R

∂vR
∂ϕ

+ vz
∂vR
∂z

=−1

ρ

∂

∂R

(
p+

B2
ϕ +B2

z

8π

)
+

Bϕ

4πρR

∂BR

∂ϕ
+

Bz

4πρ

∂BR

∂z
−

B2
ϕ

4πρR
+2

(
Ωeq,0 +

vϕ,eq
R

)
δvϕ +

δv2ϕ
R

− (qρ + qT )
c2s,0
R

(
R

R0

)−qT

. (A4)

We use this expression with δvϕ for updating vR to reduce numerical errors.

Appendix 2 Formulae
A.2.1 Basic Equations in the Rest Frame

We summarize basic equations in conservative forms in the rest frame. The R-derivatives of the following equations are

used for the shearing variables presented in Subsection 2.2.

The mass conservation is expressed as

∂ρ

∂t
+

1

R

∂

∂R
(ρuRR)+

1

R

∂

∂ϕ
(ρuϕ)+

∂

∂z
(ρuz) = 0. (A5)

The radial component of momentum flux evolves as

∂

∂t
(ρuR)+

1

R

∂

∂R
(ρu2

RR)+
1

R

∂

∂ϕ
(ρuRuϕ)+

∂

∂z
(ρuRuz) = ρ

u2
ϕ

R
− ∂p

∂R
− ρ

GM⋆

R2

+
1

R2

∂

∂R

(
B2

RR
2

8π

)
− 1

R2

∂

∂R

(
B2

ϕR
2

8π

)
− ∂

∂R

(
B2

z

8π

)
+

1

4π

[
1

R

∂

∂ϕ
(BRBϕ)+

∂

∂z
(BRBz)

]
, (A6)

where the gravity and a curvature term (u2
ϕ/R) need to be treated as source terms. These two terms and the gas

pressure gradient term constitute the main part of radial force balance. Numerical treatment of these terms is described

in Appendix 1.

The evolution of angular momentum flux is

∂

∂t
(ρuϕR)+

1

R

∂

∂R
(ρuRuϕR

2)+
1

R

∂

∂ϕ
(ρu2

ϕR)+
∂

∂z
(ρuϕuzR) =− 1

R

∂

∂ϕ
(pR)

− 1

R

∂

∂ϕ

[
(B2

R +B2
z)R

]
+

1

R

∂

∂ϕ

(
B2

ϕR

8π

)
+

1

4πR

∂

∂R
(BRBϕR

2)+
1

4π

∂

∂z
(BϕBzR

2). (A7)

The vertical component of momentum flux evolves as

∂

∂t
(ρuz)+

1

R

∂

∂R
(ρuRuzR)+

1

R

∂

∂ϕ
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∂
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R +B2

ϕ
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z
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)
+

1

4πR

∂

∂R
(BRBzR)+

1

4πR

∂

∂ϕ
(BϕBz). (A8)
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The three components of the induction equation (eq.3) are

∂BR

∂t
=

1

R

∂

∂ϕ
(uRBϕ −uϕBR)−

∂

∂z
(uzBR −uRBz), (A9)

∂Bϕ

∂t
=

∂

∂z
(uϕBz −uzBϕ)−

∂

∂R
(uRBϕ −uϕBR), (A10)

and

∂Bz

∂t
=

1

R

∂

∂R
[R(uzBR −uRBz)]−

1

R

∂

∂ϕ
(uϕBz −uzBϕ), (A11)

respectively. These evolutionary equations are constrained by

1

R

∂

∂R
(RBR)+

1

R

∂Bϕ

∂ϕ
+

∂Bz

∂z
= 0. (A12)

The total energy equation can be written in a conservative form:
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(
u2

2
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p
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)
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2 −Bz(u ·B)

]
= 0. (A13)

A.2.2 Transformation between the Rest and Corotating Frames

The equations in the rest frame shown in the previous subsection can be easily derived by replacing v by u and removing

the inertial terms of eqs.(1) – (4) in the corotating frame. When we transform from one frame to the other frame, for

example, to deal with orbital advection (Beńıtez-Llambay & Masset 2016), we have to keep in mind that the meanings

of the time derivatives are different in these two frames. Below we show the transformation of the ϕ component of the

induction equation between the rest and corotating frames for a representative example; other equations can be derived

in a similar manner.

The R and z derivatives of the terms with uϕ in eq.(A10) can be expressed by vϕ as

∂

∂R
(uϕBR) = Ωeq,0

∂

∂R
(RBR)+

∂

∂R
(vϕBR) (A14)

and

∂

∂z
(uϕBz) =RΩeq,0

∂Bz

∂z
+

∂

∂z
(vϕBz). (A15)

From ∇·B = 0, we obtain

Ωeq,0
∂

∂R
(RBR)+RΩeq,0

∂Bz

∂z
=−Ωeq,0

∂Bϕ

∂ϕ
(A16)

Substituting eqs.(A14)–(A16) into eq.(A10), we get(
∂Bϕ

∂t

)
corot

=
(
∂Bϕ

∂t

)
rest

+
RΩeq,0

R

∂Bϕ

∂ϕ
=

∂

∂z
(vϕBz − vzBϕ)−

∂

∂R
(vRBϕ − vϕBR), (A17)

where subscripts, “corot” and “rest” are the Eulerian time derivatives in the corotating frame and in the rest frame,

respectively.

Appendix 3 Numerical Treatment of Radial Shearing Boundary
A.3.1 Basic Concept

Before describing our specific method, we summarize the basic concept of the numerical treatment for the radial shearing

boundary. Let us consider a simulation box that is covered by n grid points from i = 1 to i = n along the R axis. We

set inner ghost cells at the grid points of i = 0,−1, · · · and outer ghost cells at i = n+1,n+2, · · · (Figure 8). The exact

simulation region is from the i = 1/2 boundary between the first active cell (i = 1) and the inner neighboring ghost cell

(i= 0) to the i= n+1/2 boundary between the nth active cell (i= n) and the outer neighboring ghost cell (i= n+1).

If we pick out the time derivative terms and the radial derivative terms of eqs.(A5) – (A8) and (A10) – (A13), we can

write the corresponding finite difference equation in a symbolic form as follows:
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Fig. 8. Labels for radial grid points. The simulation region is covered by the cells from i = 1 to n, namely the inner edge is located at i = 1/2 and the outer
edge is at i = n+1/2. The cells shown by dashed lines indicate ghost cells.

V m+1
i −V m

i

∆t
+

F
m+1/2

i+1/2 −F
m+1/2

i−1/2

ξR
= 0, (A18)

where the superscripts indicate labels for time and the subscripts correspond to radial locations; ξR = ∆( 1
2
R2) = R∆R

except for eq.(A10) where ξR =∆R. Eq. (A18) updates Vi from t=m to t=m+1 with 2nd order accuracy in time.

The shearing variables, S, are derived directly from the flux, F , in eq.(A18), whereas we neglected terms with small

contributions in Subsection 2.2. A direct numerical implementation of the shearing boundary condition is to impose

S
m+1/2
1/2,j−

= S
m+1/2

n+1/2,j+
(A19)

on the numerical flux at the inner and outer edges of the simulation box, where the second component of the subscripts,

j− and j+, denotes the ϕ locations at R− (i= 1/2) and R+ (i= n+1/2), respectively. We note that the relative position

between j− and j+ changes with time according to the shearing boundary condition of eq.(8), which is a natural extension

from to the Cartesian shearing box setup (Hawley et al. 1995). We also note that the ϕ location that corresponds to j±

does not generally coincide with the exact position of a fixed grid cell because the shear evolves with time. Therefore, we

need to interpolate the adjoining two cells along the ϕ axis to derive S
m+1/2
1/2,j−

and S
m+1/2

n+1/2,j+
.

If eq.(A19) is applied to Smass (eq.9), the total mass in the simulation box is conserved within round-off error, as shown

in eq. (22). The azimuthal magnetic flux at shearing planes (eq.27) and the vertical magnetic flux at horizontal planes

(eq.28) are conserved to round-off error by applying eq.(A19) to SBϕ = Ez (eq.17) and SBz =REϕ (eq.18), respectively.

We explain our specific method for the magnetic fluxes in Appendix 3.2.2.

In addition to numerical fluxes, F , it is needed to apply the shearing boundary condition to variables, V , located at the

center of ghost cells, in order to derive the numerical flux Fm+1/2 at the inner (i=1/2) and outer (i=n+1/2) boundaries

of the simulation box. V0 (Vn+1) is also necessary to determine the slope of V1 (Vn) when the 2nd order spacial accuracy

is required; for higher-order accuracy than 2nd order, more than one ghost cell per boundary needs to be prepared, i.e.,

to achieve (k+2)-th order accuracy, up to S−k(= Sn−k) and Sn+k+1(= Sk+1) are necessary to determine the slope of S1

and Sn, respectively.

We apply the shearing condition to cell centered values from the innermost active (i = 1) cells to the corresponding

sheared outer ghost (i= n+1) cells,

Sm
n+1,j+g

= Sm
1,j−a

, (A20)

and from the outermost active (i= n) cells to the corresponding inner ghost (i= 0) cells,

Sm
0,j−g

= Sm
n,j+a

, (A21)

where we add “a” or “g” to the ϕ subscripts, j±, to explicitly show the active or ghost cell.

As for V = ρ, ρvR, and ρvz, we can use the simple scaling relations derived in eqs. (38) & (39). On the other hand,

the other V = ρvϕ, BR, Bϕ, Bz, and
1
2
ρv2 + ρe+ B2

8π
are not directly connected to the shearing variables, S, via simple

relations. The most straightforward way is probably to iteratively derive these five V at the ghost cells from Smom,ϕ,

Seng, SBϕ , and SBz at the corresponding active cells under the constraint of ∇·B = 0.

However, this procedure is not suited to a staggered mesh system in which the three components of the magnetic field

are located at different positions from those of the other variables, because we need multiple interpolations, which could

reduce the numerical accuracy. Therefore, it is better to adopt a different strategy for the staggered mesh system, as

described below.
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BZ,n

Bφ,n

BR,n+1/2

Ez,n+1/2

Eφ,n+1/2

Vn

Vn+1

Fig. 9. Grid structure at the radial outer boundary, R = R+. The outermost active cell labeled with subscript n is drawn by solid lines and the ghost cell with
n+1 is by dotted lines. Each component of magnetic field is located at the corresponding surface of the cell, and the induced electric field, E = −v ×B, is
at the side. HD variables, represented by V , are at the center of the cell.

A.3.2 Staggered Meshes

The constraint transport (CT) method (Evans & Hawley 1988) is a numerical scheme to update magnetic fields under the

constraint of ∇·B = 0 within the precision of round-off error. In the CT scheme, the three components of the magnetic

field are placed on the surfaces of each grid cell (Figure 9). On the other hand, the HD variables are located at the center

of the cell. We apply the shearing periodic boundary presented in Subsection 2.2 to these staggered meshes.

A.3.2.1 Primitive Variables

Let us first explain how we apply the radial shearing boundary condition to the primitive variables, V = ρ, v, B, and e,

at ghost cells and at time t =m by eqs.(A20) & (A21). As for ρ, vR, and vz, we can use the simple scaling relations of

eqs. (38) & (39):

(ρR)n+1,j+g = (ρR)1,j−a ; (ρR)0,j−g = (ρR)n,j+a , (A22)

(vR)n+1,j+g = (vR)1,j−a ; (vR)0,j−g = (vR)n,j+a , (A23)

and

(vz)n+1,j+g = (vz)1,j−a ; (vz)0,j−g = (vz)n,j+a . (A24)

We introduced the sum of Maxwell and Reynolds stresses for the angular momentum shearing variable, Smom,ϕ (eq.14)

in Subsection 2.2. We utilize Smom,ϕ to determine vϕ and Bϕ at the ghost cells. We here assume both HD and magnetic

components have the same radial scaling as that of eq. (14), namely

ρvRδvϕ ∝ Ωeq, (A25)

and

BRBϕ ∝ Ωeq. (A26)

Eqs. (A25) & (9) give

∆Ω≡ δvϕ
R

∝ Ωeq(R), (A27)

and therefore,
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(BR)n+1/2,j+1

(BR)n+1/2,j

(BR)n+1/2,j+1

(BR)n+3/2,j

(Bφ)n+1,j+1/2

n n+1

j

j+1

1

Fig. 10. Locations of BR and Bϕ (gray dots) near the outer boundary on a horizontal plane. For simplicity, we write j here, though it should be j+g in a strict
sense, following eq.(A20).

(δvϕ/RΩeq)n+1,j+g = (δvϕ/RΩeq)1,j−a ; (δvϕ/RΩeq)0,j−g = (δvϕ/RΩeq)n,j+a . (A28)

When we apply eq.(A26) to the staggered meshes, we need to interpolate because the locations of BR and Bϕ are

different, as shown in Figure 10. The shearing condition of eq.(A26) is applied at the location of Bϕ as follows:

(BRBϕ/Ωeq)n+1,(j+g)+1/2 = (BRBϕ/Ωeq)1,(j−a)+1/2 ; (BRBϕ/Ωeq)0,(j−g)+1/2 = (BRBϕ/Ωeq)n,(j+a)+1/2 . (A29)

We also need an interpolation for BR in eq.(A29), because BR is located at different positions from that of Bϕ (Figure

10). We take the simple average of the four neighboring locations to calculate BR at i= 1 & n:

(BR)1,(j−a)+1/2 =
1

4

[
(BR)1/2,(j−a) +(BR)1/2,(j−a)+1 +(BR)3/2,(j−a) +(BR)3/2,(j−a)+1

]
(BR)n,(j+a)+1/2 =

1

4

[
(BR)n−1/2,(j+a) +(BR)n−1/2,(j+a)+1 +(BR)n+1/2,(j+a) +(BR)n+1/2,(j+a)+1

]
. (A30)

On the other hand, we have to carefully deal with BR at the ghost cells to avoid numerical cancellation, which causes

spurious behavior of Bϕ. First, we take the simple average of the four neighboring locations in the same manner to

eq.(A30):

(BR,av)n+1,(j+g)+1/2 =
1

4

[
(BR)n+1/2,(j+g) +(BR)n+1/2,(j+g)+1 +(BR)n+3/2,(j+g) +(BR)n+3/2,(j+g)+1

]
(BR,av)0,(j−g)+1/2 =

1

4

[
(BR)−1/2,(j−g) +(BR)−1/2,(j−g)+1 +(BR)1/2,(j−g) +(BR)1/2,(j−g)+1

]
, (A31)

where (BR)n+3/2,(j+g), (BR)n+3/2,(j+g)+1, (BR)−1/2,(j−g), and (BR)−1/2,(j−g)+1 are still unknown. We here use

(BRR)n+3/2,(j+g) = (BRR)3/2,(j−a); (BRR)n+3/2,(j+g)+1 = (BRR)3/2,(j−a)+1

(BRR)−1/2,(j−g) = (BRR)n−1/2,(j+a); (BRR)−1/2,(j−g)+1 = (BRR)n−1/2,(j+a)+1 (A32)

which are expected from the radial differential term of ∇·B=0. If the signs of BR on the right-hand side of eq.(A31) are

different, numerical cancellation occasionally occurs to give (BR,av)n+1,(j+g)+1/2 or (BR,av)0,(j−g)+1/2 ≈ 0, even though

all four BR on the right-hand side have finite values. If this is the case, applying (BR)n+1,(j+g)+1/2 = (BR,av)n+1,(j+g)+1/2

or (BR)0,(j−g)+1/2 = (BR,av)0,(j−g)+1/2 to eq.(A29) would give a spuriously huge absolute value of (Bϕ)n+1,(j+g)+1/2 or

(Bϕ)0,(j−g)+1/2.

In order to avoid this unphysical behavior, we set a floor, BR,min, on the interpolated BR:
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(BR)n+1,(j+g)+1/2 = sgn
[
(BR,av)n+1,(j+g)+1/2

]
×max

[
|(BR,av)n+1,(j+g)+1/2|,(BR,min)n+1,(j+g)+1/2

]
(BR)0,(j−g)+1/2 = sgn

[
(BR,av)0,(j−g)+1/2

]
×max

[
|(BR,av)0,(j−g)+1/2|,(BR,min)0,(j−g)+1/2

]
. (A33)

For BR,min we take the minimum absolute value of the four neighboring BR multiplied by a factor, fR,min, of order of

unity:

(BR,min)n+1,(j+g)+1/2 = fR,min ×min
(
|(BR)n+1/2,(j+g)|, |(BR)n+1/2,(j+g)+1|, |(BR)n+3/2,(j+g)|, |(BR)n+3/2,(j+g)+1|

)
(BR,min)0,(j−g)+1/2 = fR,min ×min

(
|(BR)−1/2,(j−g)|, |(BR)−1/2,(j−g)+1|, |(BR)1/2,(j−g)|, |(BR)1/2,(j−g)+1|

)
(A34)

When BR,min is selected in eq.(A33) at a ghost cell, the derived Bϕ depends on the choice of fR,min. Accordingly, fR,min

controls the magnetic pressure across the simulation boundary, −∂R(B
2
ϕ/8π), at the ghost cell. As a result, the accretion

velocity, vR, also depends on fR,min. We carefully determine fR,min to give the global radial balance of the angular

momentum flux between mass accretion the MHD turbulence that was discussed in Sub-subsection 4.2.3. We adopt

fR,min = 1/
√
2 in the simulation we presented in this paper.

We do not directly use shearing variables for Bz, but take a simple assumption that the initial radial profile is preserved.

Then, Bz at the ghost cells are determined by

(BzR
qB )n+1,j+g = (BzR

qB )1,j−a ; (BzR
qB )0,j−g = (BzR

qB )n,j+a . (A35)

In this paper, we adopted qB = 1, which gives the consistent radial scalings of vR (eq.A23), vz (eq.A24), BR (eq.A32),

and Bz (eq.A35) with SBz =REϕ (eq.18).

Although we do not solve an energy equation, for completeness we describe how e is determined at the ghost cells.

From Seng (eq.19) and Smass (eq.9), we obtain(
v2

2
+ (γ− 1)e

)
n+1,j+g

=

(
v2

2
+ (γ− 1)e

)
1,j−a

;

(
v2

2
+ (γ− 1)e

)
0,j−g

=

(
v2

2
+ (γ− 1)e

)
n,j+a

. (A36)

All the three components of v are already derived by eqs. (A23), (A24), & (A28), and therefore, from eq.(A36) we can

determine e at the ghost cells.

A.3.2.2 Numerical Fluxes

By using the variables, V m, at the ghost cells, we can derive the numerical flux, Fm+1/2 = Sm+1/2, at the simulation

boundaries (i = 1/2 and n+1/2) in eq.(A18). However, the calculated Sm+1/2 does not guarantee that eq.(A19) will

be within the precision of round-off error because of the azimuthal interpolation at the shearing boundary. In order to

conserve the invariant quantities introduced in Subsection 2.4 within a round-off error, it is necessary to apply corrections

to the derived Sm+1/2.

When we apply the shearing periodic condition to the magnetic field, we use SBϕ =REϕ (eq.17) and SBz =Ez (eq.18),

which are the induced electric fields located at the exact radial boundaries of the simulation box (Figure 9). Eϕ and Ez

at the radial boundaries are related to the conservation of magnetic flux, as we discussed in Subsection 2.4.

In order to conserve the vertical magnetic flux through z planes (eq.28) to round-off error, the line integration of Eϕ

along the ϕ axis at R− and at R+ must be equal:∫ ϕ+

ϕ−

dϕ(REϕ)− =

∫ ϕ+

ϕ−

dϕ(REϕ)+, (A37)

where subscript ‘−’ corresponds to i = 1/2 and ‘+’ to i = n+1/2. Eϕ at the radial boundaries are evaluated from the

boundary cell (i = 1 or n) and the ghost cell (i = 0 or n+1), and they do not usually satisfy the above conservation

relation, as previously discussed. We take the average of the original value of Eϕ at R± and Eϕ at R∓ at the corresponding

sheared location:

(REcr
ϕ (ϕ))− =

1

2
[(REϕ(ϕ))− +(REϕ(ϕ−∆Ωt))+]

(REcr
ϕ (ϕ))+ =

1

2
[(REϕ(ϕ+∆Ωt))− +(REϕ(ϕ))+] , (A38)

or in the discretized forms,

(REcr
ϕ )1/2,j− =

1

2

[
(REϕ)1/2,j− +(REϕ)n+1/2,j+

]
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(REcr
ϕ )n+1/2,j+ =

1

2

[
(REϕ)n+1/2,j+ +(REϕ)1/2,j−

]
, (A39)

The position of j− and j+ does not usually match a grid cell, and therefore, the azimuthal interpolation is necessary to

derive (Eϕ)1/2,j− and (Eϕ)n+1/2,j+ . We use a simple linear interpolation, which is sufficient to satisfy the conservation

relation of eq.(A37).

When updating the magnetic fields, we use Ecr
ϕ (ϕ), instead of Eϕ(ϕ), at the R± boundaries of i=1/2 and n+1/2. This

correction ensures that the vertical magnetic flux is conserved (eq.28) within the round-off error according to eq.(A37).

Similar to the relation between Eϕ and Bz, Ez(= vRBϕ − vϕBR) at the R± boundaries regulates the conservation of

azimuthal magnetic flux (eq.27). More specifically,∫ z+

z−

dz(Ez)+ =

∫ z+

z−

dz(Ez)− (A40)

conserves the azimuthal magnetic flux through shearing planes (eq.27), where the z integral is taken at the radial

boundaries of each shearing plane.

We slightly modify the correction method for Eϕ (eqs.A38 & A39) in order to apply it to Ez because vϕ in Ez

contains the mean rotational velocity that has opposite signs at R+ and R−. vϕBR in Ez at the two corresponding

sheared locations of R− and R+ could have very different values. In this case, if we take the local average of the two

corresponding sheared locations, as done for Eϕ (eq.A38), it may cause spurious numerical errors.

Instead of taking the local average, we use the integrated average of Ez over the ϕz planes at R± to derive a correction,

(Ecr
z )− = (Ez)− +

1

2

[
(Ez)+ − (Ez)−

]
(Ecr

z )+ = (Ez)+ +
1

2

[
(Ez)− − (Ez)+

]
, (A41)

where in the discretized form, (Ez)− = (Ez)1/2,j− and (Ez)+ = (Ez)n+1/2,j+ , and (Ez)± is the integrated average,

(Ez)± =

∫ ϕ+

ϕ−
dϕ

∫ z+

z−
dz(Ez)±∫ ϕ+

ϕ−
dϕ

∫ z+

z−
dz

. (A42)

By taking the global average, (Ez)±, random differences between the two Ez’s at the corresponding sheared locations

of R± can be canceled out. Therefore, we can reduce spurious errors of the correction when taking the local average by

using eq.(A41).

One may notice that in eq.(A42) only the z integration along both radial boundaries of a shearing plane is sufficient

to satisfy the conservation of Φϕ from eq.(A40). However, the locations of the radial boundaries do not generally match

grid cells, and therefore, the ϕ interpolation is required to match the time-evolving shearing planes at each time step. It

is simpler to take the ϕ average without ϕ interpolation. Moreover, random errors can further be canceled out by the ϕ

integration, in addition to the z integration. Therefore, we take both ϕ and z integration to derive (Ez)±.

It is also difficult to check the conservation of Φϕ at shearing planes by the same reason explained above. When we

numerically test the conservation of Φϕ, we also check the conservation of
∑

ϕ
Φϕ.

In our simulations, we implement corrections of the numerical fluxes only in the CT scheme of Eϕ and Ez. If one likes

to apply eq.(A19) to Smass for mass conservation within the round-off error, the same procedure for Eϕ (eqs.A38 & A39)

can be adopted.

Appendix 4 Epicyclic Oscillation

We derive eqs.(24) & (25) from the cylindrical shearing box formulation. We neglect the magnetic terms below. The

radial component of the momentum flux averaged over the ϕ and z directions is

∂

∂t
⟨ρvR⟩+

1

R

∂

∂R
⟨ρvRR2⟩ ≈ −∂⟨p⟩

∂R
+

⟨ρv2ϕ⟩
R

−⟨ρ⟩GM⋆

R2
+ ⟨ρ⟩RΩ2

eq,0 +2Ωeq,0⟨ρvϕ⟩

=−∂⟨δp⟩
∂R

+2
(
Ωeq,0 +

vϕ,eq
R

)
⟨ρδvϕ⟩+

⟨ρδv2ϕ⟩
R

≈ 2Ωeq,0⟨ρδvϕ⟩, (A43)
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where δp = p− peq and we refer to eq.(A4) when deriving the second equality. We leave the dominant term of the

right-hand side of the second equality to obtain the final expression. The volume integral of eq.(A43) gives eq.(24).

The azimuthal component of the ϕ and z averaged momentum flux is

∂

∂t
⟨ρvϕR⟩+ 1

R

∂

∂R
⟨ρvϕvRR2⟩ ≈ −2Ωeq,0⟨ρvRR⟩. (A44)

We take the volume integral of this equation. The second term on the left-hand side is integrated as∫ R+

R−

1

R

∂

∂R
⟨ρvϕvRR2⟩RdR= ⟨ρvRR⟩ [Rvϕ]

R+

R− , (A45)

where we factored out the shearing variable of Smass=ρvRR from the integration. We can expand R2
±≈R2

0

(
1+

2(R±−R0)

R0

)
and Ωeq,± ≈ Ωeq,0

(
1∓ 3

2

R±−R0

R0

)
for (R+ −R−)≪R0 and H0 ≪R0. Then, [Rvϕ]

R+

R− can be written as

(Rvϕ)+ − (Rvϕ)− =R2
+(Ωeq,+ −Ωeq,0)−R2

−(Ωeq,− −Ωeq,0)+ (Rδvϕ)+ − (Rδvϕ)−

≈−3

2
R0Ωeq,0(R+ −R−)−

1

2
R0Ωeq,0∆(R+ −R−)≈−Ωeq,0

(
3

2
+

∆

2

)∫ R+

R−

RdR, (A46)

where ∆≡ δΩ+/Ωeq,+ = δΩ−/Ωeq,− and we used R0 ≈ 1
2
(R− +R+) to derive the final expression. Applying eqs.(A45) &

(A46) to the volume integral of eq.(A44), we have

∂

∂t

∫ R+

R−

RdR⟨ρvϕR⟩−Ωeq,0

(
3

2
+

∆

2

)∫ R+

R−

RdR⟨ρvRR⟩=−2Ωeq,0

∫ R+

R−

RdR⟨ρvRR⟩, (A47)

which is further transformed into

∂

∂t
[ρvϕR]V =−1

2
(1−∆)Ωeq,0 [ρvRR]V . (A48)

We can usually assume ∆≪ 1 and ∂
∂t
[ρvϕR]V = ∂

∂t
[(ρvϕ,eq + ρδvϕ)R]V ≈ ∂

∂t
[ρδvϕR]V , which give eq.(25).
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