Tidal detonation of a WD by IMBH

Ataru Tanikawa (The University of Tokyo) 'Using Tidal Disruption Events to Study Super-Massive Black Holes' Jan. 23rd, 2018 at Aspen Center for Physics

- Introduction
- Spurious heating in SPH simulation for WD TDEs (AT+ 17, ApJ, 839, 81)
- High resolution study of tidal detonation (AT 17a, arXiv: 1711.05451, ApJ submitted)
- Tidal double detonation (AT 17b, arXiv: 1711.07115, MNRAS Letters accepted)

- Introduction
- Spurious heating in SPH simulation for WD TDEs (AT+ 17, ApJ, 839, 81)
- High resolution study of tidal detonation (AT 17a, arXiv: 1711.05451, ApJ submitted)
- Tidal double detonation (AT 17b, arXiv: 1711.07115, MNRAS Letters accepted)

Tidal detonation

- Supersonic combustion induced by a tidal field of a BH
 - The WD is compressed in z-direction.
 - The compression induces a shock wave.
 - The shock wave triggers explosive nuclear reactions.
 - The nuclear reactions synthesize large amounts of ⁵⁶Ni.

Intermediate mass black hole

- For tidal detonation, a WD must approach to a BH so closely that the WD is tidally disrupted.
- A WD can be tidally disrupted only by an IMBH.
 - A WD swallows a stellar-mass BH before tidal disruption (but see Kojiro talk).
 - A WD is swallowed by a massive BH before tidal disruption.
- Tidal detonation will illuminate IMBHs by radioactive decay of ⁵⁶Ni synthesized.
- WD TDEs can be probes to search for IMBHs.

Previous studies

- Rosswog et al. (2008; 2009)
 have performed SPH simulation
 for WD TDEs and tidal
 detonation.
- Large amounts of ⁵⁶Ni are synthesized in their simulation.
- WD TDEs can be observed as thermonuclear transients.
- But, they have not checked convergence of mass (or space) resolution in their simulation.

Our studies

- We have performed SPH simulation, and have checked convergence of mass resolution.
- We have verified tidal detonation by highresolution simulation, combining 1D mesh simulation with 3D SPH simulation in order to avoid the spurious heating.
- We have suggested tidal double detonation (TDD): a new explosion mechanism of a WD.

- Introduction
- Spurious heating in SPH simulation for WD TDEs (AT+ 17, ApJ, 839, 81)
- High resolution study of tidal detonation (AT 17a, arXiv: 1711.05451, ApJ submitted)
- Tidal double detonation (AT 17b, arXiv: 1711.07115, MNRAS Letters accepted)

Simulation method

· 3D SPH simulation code

- Parallelized by FDPS (Iwasawa, AT+ 16)
- Optimized by AVX instruction set (AT+ 12ab)
- · Helmholtz EoS (Timmes, Swesty 2000)
- Aprox13 nuclear reaction networks (Timmes et al. 2000)
- · BH gravity
 - · Newton potential
 - · Paczyński-Wiita potential
 - Tejeda-Rosswog formulation (Tejeda, Rosswog 2013)

Initial conditions

- · WD-IMBH systems
 - · 0.3 M \odot He WD (β =5, 500M \odot IMBH)
 - · 0.6 M \odot CO WD (β =5, 500M \odot IMBH)
 - · 1.2 M \odot ONeMg WD (β =3, 100M \odot IMBH)
- $\cdot~10^4$ 10^7 SPH particles (N) for a WD
- · The WDs have parabolic orbits.
- $\cdot\,$ The WDs and IMBHs have no spin.

Results

- Amounts of synthesized Fe group elements are not converged.
 - These amounts become smaller with N increasing
- SPH simulations fail to resolve WD structure in zdirection.

SPH

resolution

z [10⁹cm]

0.1

0.05

-0.05

-0.1

0.2

0.4

Spurious heating

- · Low resolution (small N)
 - There are few particles in zdirection.
 - Distant particles interact incorrectly.
 - · Velocity gradient is overestimated.
 - Overestimated velocity gradient switches on artificial viscosity.
 - The artificial viscosity raises spurious heating and false nuclear reactions.
- High resolution (large N)
 - There are many particles in zdirection.
- Note that artificial viscosity is correct, but estimate of velocity gradient is wrong.

- Introduction
- Spurious heating in SPH simulation for WD TDEs (AT+ 17, ApJ, 839, 81)
- High resolution study of tidal detonation (AT 17a, arXiv: 1711.05451, ApJ submitted)
- Tidal double detonation (AT 17b, arXiv: 1711.07115, MNRAS Letters accepted)

Simulation method

- · Initial condition: 0.45M $_{\odot}$ HeWD, 300M $_{\odot}$ IMBH, β =7
- 3D SPH simulation without nuclear reaction network
 - \cdot N~300 millions per a WD
- Extract of z-columns from 3D structure as 1D initial conditions
- \cdot 1D mesh simulation by FLASH
 - Helmholtz EoS (Timmes, Swesty 2000)
 - · Aprox13 (Timmes et al. 2000)
 - · No gravity
 - Pressure gradient is much larger than self and IMBH gravity.

Comparison of 1D with 3D

 Small parts of the WD are undetonated. These results are converged in terms of 1D and 3D resolution.

Difference between

success and failure cases

 The detonated columns precedes the undetonated columns.

- A leading part of a WD passes closer to an IMBH than a trailing part.
- The leading part is more compressed, and easier to be detonated.
- \cdot The detonated mass is at least 0.32Mo, and at most 0.37Mo.

Nucleosynthesis

- The detonation wave leaves 20% ⁴He and 80% ⁵⁶Ni.
- · The detonated region has high density (>10⁶ gcm⁻³).
- The total ⁵⁶Ni mass is about 0.3M_☉, comparable to SNela.

- Introduction
- Spurious heating in SPH simulation for WD TDEs (AT+ 17, ApJ, 839, 81)
- High resolution study of tidal detonation (AT 17a, arXiv: 1711.05451, ApJ submitted)
- Tidal double detonation (AT 17b, arXiv: 1711.07115, MNRAS Letters accepted)

Double detonation

- One of explosion scenarios of SNela
 - Explosion process
 - In a Helium shell, Helium detonation is ignited by mass accretion onto a WD from its companion star.
 - The Helium detonation drives Carbon detonation.
 - Two types
 - Edge-lit type (Nomoto 1980; 1982; Woosley et al. 1980)
 - Converging-shock type (Livne 1990)

"Tidal" double detonation (TDD)

- · A new explosion mechanism
- Helium detonation is ignited by tidal force, not by mass accretion.
- Tidal detonation is triggered by a shock wave in a He shell of a CO WD.
 - If there is no He shell, tidal detonation may not occur, since Carbon is harder to be ignited than Helium.
- TDD raises probability of illuminating IMBHs as thermonuclear transients.

Initial conditions

- \cdot 0.6M \odot CO WD (N~100 millions)
 - \cdot w/o He shell
 - w/ He shell (5 and 10% of total mass)
- · 300Mo IMBH
- · Parabolic orbit, $\beta = 5$

 10^{8}

Density [g cm⁻³]

 10^{6}

0

0.5

 Simulation method is the same as the above.

 $t_{1D} = 0.0000 \text{ s}$

2

1.5

z [10⁷ cm]

2.5

3

0.0234 s 0.0376 s

 ${1.5 \atop z [10^7 cm]}^{2}$

2.5 3

0.5

0

1.5

 $z [10^7 \text{ cm}]$

2

2.5

- 3

0.5

0

Results

Summary

- · We have studied tidal detonation of WDs.
- We should be careful of spurious heating in low-resolution SPH simulation.
- We have verified tidal detonation of WDs in the case of He WD with 0.45M⊙ in which large amount of ⁵⁶Ni (~0.3M⊙) is synthesized.
- We have suggested a new explosion mechanism of a WD: tidal double detonation (TDD).