# Numerical Study of White Dwarf Thermonuclear Explosions induced by Tidal Disruption Events

#### Ataru Tanikawa (The University of Tokyo)

The 8th East Asian Numerical Astrophysics Meeting
National Cheng-Kung University
Tainan, Taiwan, Oct. 22nd, 2018

Tanikawa et al. (2017, ApJ, 839, 81) Tanikawa (2018, ApJ, 858, 26)

#### Tidal Disruption Event

- Tidal disruption of a star (e.g. main sequence stars) by a BH
- Bright flare powered by accretion of the stellar debris
- Several ten candidates (Kommosa 2015)
  - TDEs of main sequence stars
  - No conformed WD TDEs





## Tidal detonation

- Supersonic combustion induced by a tidal field of a BH
  - The WD is compressed in zdirection.
  - The compression induces a shock wave.
  - The shock wave triggers a detonation wave.
  - The detonation wave synthesizes large amounts of <sup>56</sup>Ni.
  - The WD TDE can be powered by radioactive decay <sup>56</sup>Ni, similarly to SNe Ia.



## Probe to search for Intermediate mass black hole

- Tidal detonation requires a WD TDE.
- A WD can be tidally disrupted only by an IMBH.
  - · swallowing a stellar-mass BH.
  - · swallowed by a massive BH.
- · WD TDEs can illuminate only IMBHs.
- WD TDEs can be probes to search for IMBHs.



Kawana, AT+ 17 (see also Luminet, Pichon 1989 Rosswog et al. 2009; MacLeod et al. 2016)

#### Previous and our studies

- · Previous studies
  - Demonstration of large amounts of <sup>56</sup>Ni yielded
  - No convergence check about mass resolution
  - No demonstration of shock generation
- Our studies
  - · Convergence check
  - Demonstration of shock generation



Rosswog et al. (2008; 2009)

## SPH simulation

- We have performed SPH simulations in the same way as in previous studies, but with higher-mass resolution (N<sub>sph</sub> ~ 10<sup>7</sup>)
- The amounts of yielded <sup>56</sup>Ni are not converged with increasing N<sub>sph</sub> in various WDs.



Tanikawa et al. (2017, ApJ, 839, 81)

# Interpretation

- The reason for active nucleosynthesis in low mass resolution
  - The number of SPH particles is too small in the direction normal to the orbital plane.
  - · Distant particles interact incorrectly.
  - Artificial viscosity switches on falsely.
- The reason for inactive nucleosynthesis in high mass resolution
  - · A shock wave should be generated in the outermost part of a WD.
  - · Our SPH simulation cannot resolve such a thin structure even if  $N_{sph} \sim 10^7$ .
  - Note that SPH simulation does not work well in low-density regions.



## Switch 3D to 1D

- · 3D SPH simulation
  - 0.45M<sub>•</sub> HeWD disrupted by 300M<sub>•</sub> IMBH
    - · N~3x108 for the He WD
  - without nuclear reactions
- Extracting z-columns indicated by white crosses
- · 1D mesh simulation
  - · z-columns
  - · with nuclear reactions



Tanikawa (2018, ApJ, 858, 26)



### Results



More than 80% of this WD is detonated.

# Nucleosynthesis



- The detonation wave leaves 20% <sup>4</sup>He and 80% <sup>56</sup>Ni.
  - · The detonated region has high density (>106 gcm<sup>-3</sup>).
- · The total <sup>56</sup>Ni mass is about 0.3M⊙, comparable to SNela.

# Summary

- We have studied tidal detonation of WDs.
- We should be careful of spurious heating in low-resolution SPH simulation (Tanikawa et al. 2017, ApJ, 839, 81).
- We have verified tidal detonation of WDs in the case of He WD with 0.45M<sub>☉</sub> in which large amount of <sup>56</sup>Ni (~0.3M<sub>☉</sub>) is synthesized (Tanikawa 2018, ApJ, 858, 26).
- WD TDEs can be a clue to search for IMBHs.