連星白色矮星におけるDouble Detonationの3次元シミュレーション

Ataru Tanikawa (The University of Tokyo) Collaborators:

Ken'ichi Nomoto (The University of Tokyo)

Naohito Nakasato (The University of Aizu)

CfCA User's Meeting, NAOJ Mitaka, January 16th, 2019

Tanikawa, Nomoto, Nakasato (2018, ApJ, 868, 90)

Type la supernovae

- One of the brightest and most common objects in the universe
- · A cosmic distance indicator
 - The origin of iron peak elements
 - Thermonuclear explosions of white dwarfs (WDs)
 - Unknown progenitor

•

•

•

•

- Single Degenerate (SD) or Double Degenerate (DD)
 - Near-Chandrasekhar mass (Near-Ch) or sub-Chandrasekhar (sub-Ch) mass

Seitenzahl et al. (2013)

Constraints on the progenitor

\cdot SD or DD

- Non detection of RG in the pre-explosion image of SN2011fe (e.g. Li et al. 2011)
- Non detection of MS in LMC SNR 0509-67.5 (e.g. Schaefer, Pagnotta 2012)
- · Near-Ch or sub-ch
 - Both required (Hitomi Collaboration 2017)

Li et al. (2011)

Hypervelocity WDs

- The discovery of hypervelocity (~1000km/s) WDs (Shen et al. 2018)
 - Double detonations in a DD system (Guillochon et al. 2010; Pakmor et al. 2013)

This study

- We perform a SPH simulation of double detonations in a DD system.
- · We explore signals of the progenitor model.

Method

- · SPH method
 - · Parallelized by FDPS (lwasawa, AT+ 2016)
 - · Vectorized by SIMD (e.g. AT+ 2012; 2013)
- · Helmholtz EoS (Timmes, Swesty 2000)
- Approx13 nuclear reaction networks (Timmes et al. 2000)

Initial condition

- 1.0Msun WD + 0.6Msun WD
- 1.0Msun WD
 - · 0.95Msun CO core
 - · 0.05Msun He outer shell
- · 0.6Msun CO WD
- Separation: 1.6x10^4 km
- N=83,886,080
 (1.2x10^-8Msun per prt)
- Hot spot in the He outer shell

Animation

Chemical elements

- Nuclear energy:
 1.35x10^51 erg
 - 56Ni: ~0.6Msun
- Stripped mass from the secondary WD:
 ~0.003Msun
- Captured mass by the secondary WD: ~0.03Msun

SN ejecta

Velocity distribution Normal la

Future work

- Various combinations of WD masses
- Supernova remnants of D6 models
- Long-term evolution of surviving WDs

Summary

- We have performed a 3D simulation of the D6 model for type la supernova.
- CO materials are stripped by the SN ejecta, and compose low-velocity components.
- The SN ejecta have a velocity shift (~1000km/s) due to the binary motion of the progenitor system.
- The surviving WD captures a fraction of the SN ejecta, and may have atmosphere polluted by Fe peak elements.