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Abstract

The dynamical evolution of globular clusters is complicated even if all their stars
are assumed to be single stars. The presence of primordial binaries in the globu-
lar clusters further complicates their evolution. Regardless of many parameters
of the primordial binaries, such as mass fraction, binding energy distribution,
and eccentricity distribution, the dependence of the cluster evolutions on these
parameters is not investigated, except the mass fraction until now.

In this thesis, I investigate the dependence of the cluster evolutions and pop-
ulation of escapers on the distribution of the binding energies of the primordial
binaries. Since the hardening and heating rate of the binaries greatly depends
on their binding energies, the hardness of the binaries affects the core size at
and after the halt of the core contraction, and population of the escapers.

By means of N -body simulations, I systematically investigate the dynami-
cal evolution of star clusters with primordial binaries whose initial mass frac-
tions, fb,0, are different, and whose initial distributions of binding energies
are different. I set initial mass fraction fb,0 = 0.03, 0.01, 0.3, and the initial
distributions of the binding energies to be δ functions, δ(x − Eb,0)(Eb,0) =
1, 3, 10, 30, 100, 300kT0, where Ebin,0 is the binding energy of the binaries at the
initial time, and 1.5kT0 is the stellar average kinetic energy in the cluster at the
initial time.

In fb,0 = 0.1, I find that in both soft (Ebin,0 = 1kT0, and 3kT0) and hard
(Ebin,0 = 300kT0) hardness, the clusters experiences deep core collapse. On the
other hand, in Ebin,0 = 10kT0, 30kT0, and 100kT0, core collapse stops halfway.
Deep core collapse in the Ebin,0 = 1kT0 and 3kT0 models is due to the fact that
the primoridial binaries are destroyed, and can generate no or not enough energy
heating the core. Deep core collapse in the Ebin,0 = 300kT0 model is due to
the fact that single stars and binaries heated by binary-single and binary-binary
encounters are ejected from the cluster, and carry away the energy generated
by the binaries.

In fb,0 = 0.3, core collapse of the cluster with Ebin,0 = 3kT0 stops halfway.
Each binary with Eb,0 = 3kT0 generates small energy, however, the sum of the
energy generated by the 3kT0 binaries is sufficient for the halfway halt of core
collapse, if fb,0 ≥ 0.3.

Furthermore, I estimate a double-neutron-star merger rate in one globular
cluster using my simulation results. The merger rate has little dependence
on the distribution of the binding energies of the primordial binaries, and is
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limited by the number of neutron stars retained by the globular clusters. From
my estimate, 200 double neutron stars which merge within a Hubble time are
formed in one globular cluster. Since 150 globular clusters are in our Galaxy,
3× 104 double neutron stars merge within a Hubble time in our Galaxy, which
is comparable to Kim et al. (2005)’s estimate which is 15 per 106 years in our
Galaxy.

I perform the above N -body simulations by means of a new N -body sim-
ulation code equipped with special treatments for binaries. The name is GO-
RILLA. In GORILLA, we approximate the internal motions of two particles
isolated enough from the other particles as two-body motions. We can separate
the part of the special treatment for the binaries as a module from GORILLA.
I call the module fro the special treatment for the binaries, GORIMO (GORIlla
MOdule). By means of GORILLA, we can follow the dynamical evolution of
clusters after gravothermal core collapse oscillations within energy error ∼ 1
% in almost all case. Sometimes, long-lived hierarchical triple systems appear.
The integrations of their orbits generate large energy errors, and the total energy
errors exceed 1 %.
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Chapter 1

Introduction

Globular clusters consist of about 105 stars, distributed almost spherically. In
our Galaxy, about 150 globular clusters are observed not only in the disk, but
also in the halo. The globular clusters are observed in any type of galaxy, such
as ellipticals, spirals, and irregulars, with wide variety of its specific frequency,
SN , the number of the globular clusters per unit galaxy luminosity (e.g. Harris
2001).

The globular clusters are well modelled as self-gravitational many-body sys-
tems which consist of only point-mass particles. This is because most masses
of the globular clusters consist of those of stars. The mass-to-light ratios of the
globular clusters are about 2 in the units of M¯/L¯, where M¯ and L¯ are,
respectively, solar mass and solar luminosity (Harris 1996), and those of the
main-sequence stars in the globular clusters is also about 2. The masses of such
stars are less than 0.8M¯, since the ages of the globular clusters are more than
1010 years. The sizes of the stars are much smaller than those of the globular
clusters by about 8 order of magnitudes. Assuming that the mass of each star
is 0.8M¯, its radius is about 0.004AU. On the other hand, the typical sizes of
the globular clusters, such as their half-mass radii, are about 1 − 10pc (Harris
1996).

During 106 years, the globular clusters are likely to be in dynamical equi-
librium. The dynamical equilibrium is defined as the situation where globular
clusters keep their gravitational potentials steady, while individual stars are or-
biting. Assuming that the distributions of surface brightness of the globular
clusters reflect their mass distributions, their mass distributions can be well
fitted to theoretical cluster models in dynamical equilibrium (e.g. King 1966).
The velocity distributions of the globular clusters are also in good agreement
with those of the models (e.g. Gunn, Griffin 1979).

On much longer timescale, the globular clusters never stay in the dynamical
equilibrium. The orbital energies of the stars, i.e. the sum of their kinetic
and potential energies, fairly change due to a series of two-body interactions
with other stars. This process is called two-body relaxation. Typical two-body
relaxation timescale in the globular clusters are about 108 − 109 years, which
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are sufficiently smaller than the ages of the globular clusters (1010 years). The
typical two-body relaxation time is usually represented by half-mass relaxation
time, which is two-body relaxation time at a half-mass radius, expressed as

trh =
0.138M1/2rh

3/2

G1/2m̄ log(0.4N)
, (1.1)

where G is the gravitational constant, M is the total mass of a cluster, N is its
total number of stars, rh is its half-mass radius, and m̄ is the average mass of
its stars (Spitzer 1987).

The dynamical evolutions of clusters are one of interesting topics in terms of
the nonexistence of thermodynamical equilibrium. Since velocity dispersions in
the clusters usually increase inward, energy flows outward through two-body re-
laxation. Then, the velocity dispersions in inner regions of the clusters decrease,
and the inner regions contract. Vice versa in outer regions of the clusters. When
the inner regions contract and become sufficiently dense, cores of the clusters by
itself become self-gravitational systems. Such cores contract, and the velocity
dispersions in the cores increase, when energy flows outward from the cores.
Since the increase of the velocity dispersions in the cores lead to further energy
outflow, runaway contractions of the cores occur. Such runaway process is called
gravothermal core collapse (Antonov 1962; Lynden-Bell, Wood 1968; Hachisu,
Sugimoto 1978).

On the course of the gravothermal core collapse, encounters among three
single stars become rapidly frequent at a given density. This is because the
rate of the encounters depends on cube of number density, whereas the rate
of two-body encounters depends on square of number density. Through such
an encounter, one star carries away energy, and the remaining stars compose a
binary (Aarseth 1971). The binary is called three-body binary.

The three-body binaries further complicate the dynamical evolutions of the
clusters. Despite of the small number of the three-body binaries, they may affect
the dynamical evolutions of whole clusters, since one binary can provide energy
for the surrounding stars infinitely in principle (Heggie 1975). On average, hard
binaries become harder through the interactions with the surrounding stars, and
consequently the surrounding stars gain energy, where hard and soft binaries
have the binding energy more and less than the kinetic energy of the surrounding
stars, respectively. The hardening rate of the hard binaries keeps constant, even
if they are infinitely hard. The hardening of the hard binaries per one interaction
is proportional to their binding energies, and the rate of the interactions is
inversely proportional to their binding energies. Both are canceled.

The binaries in the collapsing core interact with the surrounding stars. Con-
sequently, the surrounding stars gain energy, and spread their energy all over
the core. When such energy exceeds the energy which flows outward from the
core, the gravothermal core collapse stops. Henon (1975) first demonstrated
this process by means of Monte Carlo simulation, although he introduced ar-
tificial energy sources in the cluster center. The orbital interaction of binaries
can not be solved by its method. The reason why he considered such energy
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source as binaries is that binaries are found in the center of the clusters after
core contraction by N -body simulations at that time (Aarseth 1971; Aarseth
1975; Wielen 1974; Wielen 1975).

The dynamical evolution of the core is not finished. The core expands,
and the velocity dispersion in the core becomes lower than its surroundings,
when the energy generated by the binaries exceeds the energy outflowing from
the core. The energy flows from the surroundings to the core, and the core
furthermore expands. This is the opposite mechanism to the gravothermal core
collapse. The core stops expanding, and shrinks again when the core expansion
does not increase the energy of the core due to low energy of its surrounding
stars. This is called gravothermal oscillations, and was first shown by Sugimoto
and Bettwieser (1983), and Bettwieser and Sugimoto (1984) by means of gas
model simulations. The gravothermal oscillation is demonstrated by the other
methods (Fokker-Planck simulations by Cohn et al. 1989; N -body simulations
by Makino 1996).

The dynamical evolutions of clusters with primordial binaries are greatly
different from those of the clusters without primordial binaries. Previous studies
showed that the cores of the clusters with primordial binaries stop contracting
before the onset of the gravothermal core collapse. The core radii at the halt
of the core contraction are larger than those of the clusters without primordial
binaries at the halt of the gravothermal core collapse by order of magnitudes
as reviewed in detail in section 1.1. Many primordial binaries provide the stars
in the core with enough energy to stop the core contraction, even when the
densities of the cores are comparatively low. The amount of energy generated
by the primordial binaries is proportional to the sum of the product of the
densities of single stars and the binaries, and the square of the density of the
binaries, compared with the amount of energy generated by the three-body
binaries which is proportional to the cube of the density of single stars.

The clusters with primordial binaries are possible. It is likely that the globu-
lar clusters contain primordial binaries. Many binaries are observed in the solar
neighborhood (e.g. α Canis Majoris; α Canis Minoris; α Scorpii). Since the
stars in the solar neighborhood rarely interact with each other, most of binaries
are considered not to be formed dynamically, but to be formed at the moment
of star formation. Such primordial binaries may be formed also in the globular
clusters.

For following the dynamical evolution of a star cluster with binaries, N -body
simulation is the most powerful method. This is because the N -body simulation
has the least number of approximations. For the N -body simulations, we need
codes with the special treatment of binaries. If we perform N -body simulations
naively without any treatment, we have to spend most time calculating the
orbits of the binaries, and lose the accuracy of the orbits of the binaries. This is
because the periods of binaries are smaller than the dynamical time of typical
star in these clusters by several order of magnitudes, and the sizes of binaries
are also smaller than those of these clusters by several order of magnitudes.

Two codes equipped with the special treatments of binaries are published,
which are NBODY4 (e.g. Aarseth 2003), and kira (e.g. McMillan, Hut 1996;
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Portegies Zwart et al. 2001). However, as described in detail in section 1.2,
these published codes are complicated in the treatments. It is hard for other
than the developers to refine these codes for dealing with unique troubles in
their studies. The helps of the developers are vital.

In this thesis work, I describe a new N -body simulation code with simpler
treatments for binaries, which I call GORILLA. In section 1.2, I review the
merits and difficulty of N -body simulations, and describe how the published
codes keep the advantages of N -body simulation, and overcome its difficulty.
In the first half of section 1.3, I analyze the reason for the complications of
the published codes, and describe how I develop my simpler code based on the
analysis.

The purpose of this thesis work is to investigate one of the dependences
of the dynamical evolutions of the clusters on many parameters of primordial
binaries by means of GORILLA. We have to set the parameters of primordial
binaries for the initial conditions of the clusters. However, previous studies
cover only a part of the dependences of the dynamical evolutions of the clusters
on these parameters. In section 1.1, I review previous studies on the dynamical
evolutions of clusters with primordial binaries. In the last half of section 1.3,
I point out the dependences that remain to be investigated, and describe the
dependence I investigate.

1.1 Clusters with primordial binaries

Spitzer and Mathieu (1980) pioneered the studies of the dynamical evolution
of clusters with primordial binaries. They performed Monte Carlo simulations.
They showed that the time when gravothermal core collapse stops is more de-
layed in these clusters than in the clusters without primordial binaries, and the
depths of their core collapse are the same as those of clusters without primordial
binaries. The simulations have not extended further (e.g. chapter 7 in Spitzer
1987).

In 1980s, the evolutions of clusters with primordial binaries have been stud-
ied by means of N -body simulations, although the number of particles is small
(< 500). Aarseth (1980) has treated the clusters with N = 250, and with 8
primordial binaries. Giannone and Molteni (1985) has treated the clusters with
N = 300, and with 60 primordial binaries. Leonard and Duncan (1988; 1990)
have performed the clusters with N = 45, and with 15 primordial binaries. The
difference between the clusters and clusters without primordial binaries is not
distinct.

Goodman and Hut (1989) (hereafter GH89) first showed theoretical esti-
mates that the core of the cluster with primordial binaries at the halt of core
contraction is larger than that of the cluster without primordial binaries by
order of magnitudes. Their theoretical estimates is based on the model that
the cluster core stop contracting when energy generated by the primordial bi-
naries is balanced with energy outflowing from the inner region of the cluster
to the outer region. Here, the core is assumed to be gravothermally stable.
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The primordial binaries generate enough energy to stop the core contraction
even if the core radius is relatively large, i.e. the number density at the clus-
ter center, around which most interactions between binaries and single stars,
and two binaries occur, is relatively small. This is because, in the cluster with
the primordial binaries, the rate of the energy generation is proportional to the
sum of product of the central number densities of single stars and binaries, and
square of the central number density of the binaries. On the other hand, in
the cluster without the primordial binaries, the rate is proportional to cube of
the central number density of the single stars, since only three-body binaries
generate energy.

McMillan et al. (1990; 1991) first performed N -body simulations of clusters
with primordial binaries in which the number of particles is more than 1000.
The mass fraction of the primordial binaries is about 20 %. Due to its large num-
ber of particles, they can clearly show that the cluster cores stop contracting at
the larger cores than those without primordial binaries. Binary-binary encoun-
ters largely contributed to the energy generated from binaries after the halts
of core contractions, since the binaries occupy the cluster center due to mass
segregation. The binaries is depleted through the binary-binary encounters.

By means of Fokker-Planck simulations, Gao et al. (1991) investigated the
dynamical evolutions of clusters with primordial binaries. The clusters have
3 × 105 particles including 3 × 104 primordial binaries. They showed that the
cluster cores slowly contract after rapid core contraction, not stop contracting.
The gravothermal oscillations occur, after the slow core contraction continues for
a long time, about several ten half-mass relaxation times. The large number of
particles enables their simulations to show the gravothermal oscillations. The
results of their simulations become standard other than N -body simulations
(Giersz, Spurzem 2000; Fregeau et al. 2003).

Heggie and Aarseth (1992) performed N -body simulations of clusters with
2000 particles that contain 6 or 12 % primordial binaries in mass. They made
clear the reason for the difference of the rates of the above core contractions.
The rapid core contraction occurs due to energy outflow from the inner region
of the cluster to the outer region. On the other hand, the slow core contraction
is due to the depletion of the primordial binaries. The smaller number of the
binaries has to generate enough energy to be balanced with the energy loss due
to the escape of stars, so that the mass density at the cluster center increases.

The above studies investigate difference of the dynamical evolutions between
clusters with and without primordial binaries. Hereafter, I review previous
studies focusing on the dynamical evolutions of clusters with primordial binaries
that have different initial conditions.

Aarseth and Heggie (1993) performed N -body simulations of clusters with
4000 particles that have mass spectrum. The core radius of the cluster at the
halt of the core contraction is smaller than those of clusters with equal-mass
stars. This is because the binaries in the cluster are less concentrated than
those in the clusters with equal-mass stars. If single stars have larger mass than
binaries, the single stars more preferentially fall into the cluster center than the
binaries.
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Vesperini and Chernoff (1994) (hereafter VC94) investigated the dependence
of core radii at the halt of core contraction on the core mass fraction of primor-
dial binaries and the distribution of the binding energies of the binaries. Their
theoretical estimates are based on those of GH89. They refined the model of
GH89, adding the dependence of energy generated from the binaries on their
binding energies as follows. As the binding energies become larger (or smaller),
the binaries are easier to generate (or absorb) energy. The boundary between
large and small binding energies is 1.5kTc, where 1.5kTc is the average kinetic
energy of single stars in the core. Since binaries with larger binding energies
generate more energy, single stars or binaries themselves involved with encoun-
ters immediately are ejected from the cluster before they give other stars energy.
This critical binding energy is about 100kTc, which is derived from the escape
energy from the cluster center, and the amount of energy generated from bina-
ries per one encounter.

They set the core mass fraction to be 0 − 60 %, the distribution function
to be f(Ebin) ∝ Ebin

n−2(n = 0, 1, 2), the upper limit to be 30 − 250kTc, and
the lower limit to be 5 − 15kTc. When the core mass fraction is 10 %, and
the upper and lower limits are, respectively, 10kTc and 100kTc in th binding
energy distribution n = 1, the core radius is larger than that of the cluster
without primordial binaries by order of magnitudes. When they change the core
mass fraction to 60 %, and fix the other parameters, the core radius increases
by a factor of three. When they change the upper and lower limit as above,
respectively, the core radii changes only in the range of several ten %. When
they change the binding energy distribution, the core radii are rarely different.

Heggie et al. (2006) made clear the dependence of the dynamical evolutions
of clusters with primordial binaries on the mass fraction in the whole clusters
by means of N -body simulations. The clusters have 4000 particles that contain
0 − 100 % primordial binaries in mass. Some clusters have more than ten
thousands, but the clusters contain only 0 and 20 % primordial binaries. When
clusters contain more than 20 % primordial binaries in mass, the core radii at the
halt of core contraction hardly depends on the mass fraction of the primordial
binaries. The core mass fraction of the primordial binaries are not significantly
different among the cluster models, since the binaries become more concentrated
than at the initial time due to mass segregation.

I summarize the previous studies about the evolutions of clusters with pri-
mordial binaries. The core radii of clusters with primordial binaries at the halt
of rapid core contraction are larger than those of clusters without primordial
binaries at the halt of the gravothermal core collapse by order of magnitudes.
Then, the core slowly contracts, and gravothermal oscillations follow.

The core radii at the halt of the rapid core contraction depends on the core
mass fraction of primordial binaries, however they weakly depends on the mass
fraction in the whole cluster when the mass fraction is more than 20 %. The
distribution of the binding energy of primordial binaries slightly affect the core
radii at the halt of the rapid core contraction. Stellar mass spectrum makes
core radii at the halt of the rapid core contraction smaller.
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1.2 N-body simulation of a star cluster

In clusters, each particle obey the equation of motion as follows:

mi
d2ri

dt2
= −

N∑
j 6=i

Gmimj
ri − rj

|ri − rj |3
(i = 1, 2, · · · , N), (1.2)

where t is time, G is the gravitational constant, N is the number of the par-
ticles, ri and rj are, respectively, the positions of i-th and j-th particles, and
mi and mj are, respectively, the masses of i-th and j-th particle. In N -body
simulations, equation (1.2) is directly solved. N -body simulations have the least
assumptions.

In other than N -body simulation, the orbits of particles (or superparticles
represented by groups of particles) are approximated as follows. At a given
time, cluster potential is calculated by assuming that its potential is spherically
symmetric. During two-body relaxation time, the particles are orbiting in the
cluster potential fixed. Just one time, the particles are deflected by perturbation
as which two-body relaxation is modelled. Cluster potential is calculated again
in the same way as above.

The energy generated from primordial binaries is approximated in the fol-
lowing two methods. First one (Gao et al. 1991; Giersz, Spurzem 2000; Fregeau
et al. 2003) uses cross section of binary-single encounters as a function of gen-
erated energy, which based on previous three-body scattering experiments, and
total cross section of binary-binary encounters and the average generated energy
per one encounter. These cross section depends on local density and velocity
dispersion. The generated energy is derived from these cross section and Monte
Carlo methods. Second one (Giersz, Spurzem 2003; Fregeau, Rasio 2006) de-
cides whether binary-single and binary-binary encounters occur, using their total
cross sections. When these encounters occurs, the generated energy is derived
from direction integration of three-body and four-body scattering experiments.

N -body simulations are very hard due to the absence of the approximation,
such as the above. N -body simulations have the following three difficulties.

The first difficulty is the large calculation cost of gravitation. Equation (1.2)
is calculated for each particle per about its dynamical time. The calculation
cost is order of N2. In the approximate methods, potential of each particle is
calculated per about two-body relaxation time of the cluster. The calculation
cost of all the potentials is order of N . Potential of each particle is determined
by the distance from the cluster center, assuming that particles are distributed
spherically.

N -body simulations with the large number of particles require the acceler-
ation of the calculation of gravitation. It is appropriate to use GRAPE (e.g.
Makino et al. 2003), which is a special purpose computer for accelerating the
calculation of gravitation, or to parallelize the calculation of gravitation. Among
N -body simulations in which the dynamical evolutions of clusters are followed
during ∼ 1010 years, the largest number of particles is ∼ 105. All the N -body
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simulations use GRAPE (e.g. Baumgardt, Makino 2003; Baumgardt et al. 2004;
Baumgardt et al. 2005; Shara, Hurley 2006).

The second difficulty is the large deflections of the orbits of particles through
close encounters. The timescale on which the accelerations of particles change
during the close encounters is sometimes smaller than that at the usual time by 8
order of magnitudes. We need skillful time integration scheme, and timestepping
schemes. It is commonly performed to combine fourth-order Hermite scheme of
individual timestep scheme (Makino, Aarseth 1992) with block timestep scheme
(McMillan 1986; Makino 1991b).

In an individual timestep scheme, timestep of each particle may be changed
and separately determined. The reason why this scheme is used for N -body sim-
ulations of clusters is that the timescale on which the accelerations of particles
change has a wide range in every particle.

In a block timestep scheme, all the timesteps are permitted to be power of
two. This scheme enables us to calculate the acceleration and its time deriva-
tives of multiple particles. This scheme is useful when GRAPE is used, or the
calculation of gravitation is parallelized. In GRAPE, the acceleration of multi-
ple particles is calculated at the same time. In parallelization of the calculation,
the number of communication among computers for information of particles
that act gravitation is decreased.

Hermite scheme is time integration scheme, and simplifies algorithm that
tends to become complicated due to individual timestep scheme. In Hermite
scheme, particles keep only their current data, such as their positions, velocities,
accelerations, and its time derivatives, for obtaining their data at the next time.
However, in Aarseth-type scheme (Aarseth 1963), each particle keep its data
also at previous time for the integration of itself. In Runge-Kutta scheme, some
particles have to keep their data at previous time for the integration of other
particles.

Fourth-order Hermite scheme is commonly used, since the calculation cost
at each timestep is believed to be well balanced with the size of its timestep.
This is shown by Makino (1991a), although he adopted Aarseth-type scheme for
time integration scheme. It has been recently reported that in Hermite scheme,
sixth- and eighth-order schemes are more efficient than fourth-order scheme
(Nitadori, Makino 2008). So, these higher-order schemes may be replaced with
fourth-order scheme in the near future.

The third difficulty is the presence of binaries. The size of the binary, such as
its semi-major axis, may be smaller than the size of the cluster by more than 9
order of magnitudes. This is the case where the binary components are contact
if they have 0.8M¯, i.e. their separation is 0.004AU, and the cluster size is 10pc.
In this case, the periods of the binaries are smaller than the dynamical time of
the typical particle by about 10 order of magnitudes. If we perform N -body
simulations naively, we may follow the orbits of the binary components to an
accuracy of at most 7 digits, expressing the positions of particles as double-
precision floating-point number. Furthermore, we have to spend most time
calculating the orbits of the binary components due to their small periods.

Two published N -body simulation codes, NBODY4 (e.g. Aarseth 2003), and
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kira (e.g. McMillan, Hut 1996; Portegies Zwart et al. 2001), deal with the above
two problems, in other words, the differences of the sizes and timescales in the
following way. I first describe the solution for the difference of the sizes. The
coordinates of the binary components are transformed into the coordinates of the
center of mass of the binaries, and the relative coordinates between the binary
components. Both the coordinates are expressed as double-precision floating-
point number. This enables us to follow the orbits of the binary components to
an accuracy of at most 16 digits.

Next, I describe the solution for the difference of the timescale. In the above
transformation of coordinates, all we need is to device time integration of the
relative coordinate between binary components. The timestep of the relative
coordinate has to be small, however that of the center of mass of the binary is
not necessarily small. The change of the acceleration of the former coordinate
is large due to the gravitation between the binary components. On the other
hand, that of the latter coordinate is relatively small due to the absence of
the gravitation between the binary components. The gravitation between the
binary components is much larger than those which other particles act on the
binary components.

The calculation cost of the time integration of the relative coordinate be-
tween the binary components may be reduced by omitting the calculation of
gravitations which other particles act on the binary components. The omis-
sion is as follows. We ignore the gravitations of particles whose contributions
to the acceleration of the relative coordinate is small. We judge whether the
contribution is small or not by comparing the gravitation between the binary
components with the gravitations of other particles on the center of mass of the
binary.

In NBODY4, the relative motions of the binaries are regularized by various
regularization methods, such as Kustaanheimo-Stiefel method (Kustaanheimo,
Stiefel 1965). The smoothing orbit by these methods enables the timestep of
particles to become large. The smoothing of the orbits is due to the disap-
pearance of singularity where the distance between the binary components is
zero.

1.3 This thesis

In this thesis work, I describe an N -body simulation code for a star cluster
from scratch, whose name is GORILLA. The reason why I develop this code by
myself is that I need a simpler code than the two published codes, and that I
want to comprehend the special treatment for the binary by myself.

In the two published codes, the treatments of binaries are most complicated.
Among these treatments, for the integration of the relative coordinate between
binary components, it is hard to omit the gravitations of particles other than
the binary that are sufficiently smaller than the gravitation between the binary
components. Usually, the discrimination whether each particle is omitted or
not is performed once per multiple timestep. Each binary has to keep the
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discrimination.
In the treatment of binaries of GORILLA, the relative motions of relatively

isolated binaries are approximated as two-body motions. This corresponds to
the omission of the gravitation of all the other particles on the binaries. In other
words, there are only two treatments of binaries that the gravitations of all the
other particles is considered or not.

In GORILLA, we can separate the part of the special treatment for the
binaries as a module from other parts. I call the module GORIMO (GORIlla
MOdule). If you combine your fourth-order Hermite scheme with individual and
block timestep schemes and GORIMO, you can perform N -body simulations of
clusters.

The purpose of this thesis work is to investigate one of the dependences of
the dynamical evolution of clusters on many parameters of primordial binaries
by means of GORILLA.

If we limit equal-mass particles, the population of primordial binaries is
characterized by the parameters, such as the mass fraction, and the distribu-
tions of the binding energies and eccentricities. All of them are not well-known
observationally and theoretically.

However, previous numerical studies only focused the dependence of the mass
fraction (Heggie et al. 2006), and did not so the dependence of the distribution of
the binding energies. The distribution is usually fixed as uniform in logarithmic
scale.

In this thesis, I pay attention to the dependence of the evolution of the cluster
core on the distribution of the binding energies of the primordial binaries. I
expect that the evolutions of the core are different according to the distribution
of the binding energies. This is because the heating rate of the binaries is greatly
different between their binding energies. Soft binaries do not heat the clusters
due to their destruction through binary-single and binary-binary encounters.
Intermediate hard binaries efficiently heat the clusters. Hard binaries do not
heat the clusters due to the ejections of themselves and single stars involved by
binary-single and binary-binary encounters with the binaries.

I also expect that the population of escapers from the clusters depends on
the distribution of the binding energies. As the population of harder binaries
is larger, the number of the escapers is larger. This is because single stars and
binaries involved by binary-single and binary-binary encounters gain larger en-
ergy as the binaries are harder. The population of binary escapers is important
for investigating the contribution of the binary escapers to compact binaries on
galactic fields. Most binary escapers are hard, since large energy is required for
the ejection of the binaries, and the large energy comes only from binary-single
and binary-binary encounters involving hard binaries.

VC94 investigated the dependence of the core radii at the halt of core con-
traction on the distributions of the binding energies of the primordial binaries.
However, they did not cover all the distribution of the binding energies of the
primordial binaries. According to their model of the amount of energy from the
primordial binaries to the cluster, these binaries are divided into three hardness
groups. First hardness group is soft binaries (< 1.5kTc) that can not give the
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cluster energy due to their destructions. Second hardness group is intermedi-
ate hard binaries (1.5kTc <,< 100kTc) that can give the cluster energy. Third
hardness group is super hard binaries (> 100kTc) that can not give the cluster
energy due to their ejections. Their distributions always contain the intermedi-
ate hard binaries. This may be the reason why the core radii at the halt of the
core contraction weakly depend on the distribution of the binding energy of the
primordial binaries.

Furthermore, since VC94 adopted theoretical estimates, they can not follow
the evolution of the clusters after the halt of the core contraction. Binary-single
and binary-binary encounters after the halt of the core contraction are more
frequent than those before the halt of the core contraction due to its higher core
density. The distributions of the binding energies of the primordial binaries are
greatly changed, and many single stars and binaries are ejected.

I investigate the effect of each hardness group of the primordial binaries on
the dynamical evolutions of clusters by means of N -body simulations. For this
purpose, I set the distribution functions that consist of the primordial binaries
with equal hardness. In other words, these are δ function, δ(x − Ebin,0), where
Ebin,0 is the initial binding energies of the primordial binaries. I adopt Ebin,0 =
1, 3, 10, 30, 100, 300kT0, where 1.5kT0 is the average kinetic energy of particles
in the whole cluster at the initial time, and 1kT0 is about 0.6kTc,0, where kTc,0

is the average kinetic energy of particles in the cluster core at the initial time.
I set the mass fraction to be 10 %. Furthermore, I change the mass fraction to
3 and 30 % in Ebin,0 = 3, 30, 300kT0 cluster models.

By these investigation, we can constrain the range of the variety of the
cluster evolutions and population of escapers due to the difference between the
distributions of the binding energies. The core evolutions and populations of
escapers in clusters with wide distributions of the binding energies of primordial
binaries should be intermediate among those of my cluster models with the
binding energies Ebin,0 which sandwich and included in the wide distribution.

All of my cluster models with primordial binaries do not experience the
shallower core collapse due to heat generation from the binaries. If clusters
have only softer primordial binaries, such as less than 1kT0, the binaries will
be destroyed at the early phase of evolution. Then, the clusters experience
deep core collapse as in the case without primordial binaries. On the other
hand, if clusters have only much harder primordial binaries, such as more than
300kT0, the clusters will not be heated by released energy of the binaries. This
is because the energy released by the binaries is large enough to eject single stars
and binaries involved with binary interactions from the cluster. Therefore, the
clusters also experience deep core collapse.

After the halt of the core contraction in the clusters with intermediate hard
primordial binaries (Ebin,0 = 10kT0, 30kT0, 100kT0), the core radii slightly de-
crease in Ebin,0 = 10kT0 and 30kT0 models, and is not changed in Ebin,0 =
100kT0, while the half-mass radii are expanding. The decrease of the ratio of
the core radii to the half-mass radii is due to the overall hardening of the bi-
naries. The overall hardening results from the decrease of the average stellar
kinetic energy in the clusters due to the energy generated by the primordial
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binaries. The slight decrease of the core radii themselves in Ebin,0 = 10kT0

and 30kT0 models is due to the hardening of the primordial binaries through
binary-single and binary-binary encounters. This is the first work that shows
the relation between the evolution of the core radii and the distribution of the
binding energy consistently.

Finally, as one of examples of the applications of my simulation results to
astrophysics, I estimate the merger rate of double neutron stars (DNSs) formed
in one globular cluster. Mergers of DNSs are important for observations of
gravitational wave. Furthermore the DNSs are one of candidates of progenitors
of short-gamma ray bursts. The DNS merger rate in the universe may be
dominated by DNSs dynamically formed in globular clusters through binary-
single and binary-binary encounters involving exchanges between neutron stars
and other stars.

Previously, Grindlay et al. (2006) and Ivanova et al. (2008) estimated the
DNS merger rates. Grindlay et al. (2006) semi-analytically estimated the DNS
merger rate, using a modelled evolution of stellar number density in the cluster
center until core collapse, the assumed number of binaries including one neutron
star, and cross section of such binaries for encounters with single neutron stars
in which the single neutron stars replace the binary component other than the
neutron stars, which is derived from three-body scattering experiments. The
number of the DNSs merging within a Hubble time is 12 in one post-collapse
cluster. Since 40 post-collapse clusters are in our Galaxy, they estimated that
480 DNSs are in our Galaxy.

Ivanova et al. (2008) estimated the DNS merger rate, using a cluster model
with fixed stellar number density in the core, modelled mass segregation, and
binary-single and binary-binary encounters which occur stochastically obeying
assumed cross section. They suggested that 0.2 DNSs which merge within a
Hubble time are in one cluster.

It seems that the number of the DNSs is underestimated in both models.
Grindlay et al. (2006) assumed that the progenitor of the DNSs is only binaries
with one neutron star. However, binaries without neutron stars can be also
a progenitor of the DNSs. Since the neutron stars are most massive star in
globular clusters, it is highly likely that such binaries become the DNSs after
such binaries encounter with single neutron stars two times. The encounters of
such binaries with single neutron stars are frequent in the core, since neutron
stars are concentrated on the cluster core due to mass segregation.

Ivanova et al. (2008) modelled mass segregation, assuming that the prob-
ability of a star with mass m to enter the core after a time t is a Poisson
distribution: p(t) = (1/tsc) exp(−t/tsc), where tsc is a characteristic mass seg-
regation timescale inversely proportional to m. In this modelling, neutron stars
are less concentrated in the core.

When I estimate DNS merger rate, I need to model the motion of neutron
stars in clusters, since in my cluster models stars have equal mass, and I can not
directly estimate DNS merger rate from my simulation results. Due to mass seg-
regation, only single neutron stars and binaries in the cluster core, where such
binaries have any type star. Such binaries become DNS after several encoun-
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ters with single neutron stars. Eventually, these DNSs are ejected as a result
of binary-single and binary-binary encounters. Since almost these encounters
involve neutron stars, almost high-velocity single and binary escapers consist of
only neutron stars until the neutron stars in the clusters are completely depleted.

Using the number and binding energy distribution of high-velocity binary
escapers in my simulation results, I estimate the number of the DNSs which
merge within a Hubble time. Then, the number of the DNSs is 200 in one glob-
ular cluster, and subsequently the number of the DNSs is 3×104 in our Galaxy,
since 150 globular clusters are in our Galaxy. The merger rate is comparable to
Kim et al. (2005)’s estimate, 1.5× 105, which is based on observations of DNSs
in our Galaxy.

The structure of this thesis is as follows. I describe a new simulation code,
GORILLA, in section 2. In section 3, I describe my investigation of the effect
of the hardness of primordial binaries on the dynamical evolution of clusters.
In section 4, I show the example of application of my simulation results to
astrophysics: estimate of double neutron star merger rate. I summarize this
thesis in section 5.
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Chapter 2

A New Code GORILLA

In this section, I describe a new code N -body simulation code named GO-
RILLA, which I develop from scratch. GORILLA is equipped with the special
treatment of binaries by which relatively isolated binaries are approximated as
two-body motions. In section 2.1, I simply estimate the improvements of the
accuracy and efficiency of the N -body simulations owing to the treatment. In
section 2.2, I show an algorithm of the treatment, which is incorporated into
the fourth-order Hermite scheme with individual and block timestep schemes.
I separate the part of the special treatment for the binaries as a module from
other parts, and the module part is named GORIMO. In section 2.3, I describe
how to combine GORIMO with your codes. In section 2.4, as test simulations of
GORILLA, I follow the dynamical evolutions of ten N = 1024 clusters without
primordial binaries during longer than three core collapse times. The energy
errors at the terminal times are ∼ 1 % in nine of the ten clusters, and ∼ 10 %
in one cluster. These energy errors look bad for studies of the cluster cores in
which particles have 1 − 10 % energy of the clusters. I show the reliability for
structural parameters of the clusters in the simulations by means of GORILLA
in section 2.5. Finally, I show comparison between simulation results by means
of GORILLA, and other N -body simulation codes, i.e. NBODY4, and kira in
section 2.6.

2.1 Basic concept

I estimate the improvements of the accuracy and efficiency of N -body simula-
tions owing to the special treatment of binaries. In the special treatment, the
relative motions of relatively isolated binaries are approximated as two-body
motions.

For this purpose, I consider a relatively simple cluster in which only one
binary exists, and is sufficiently isolated from the other stars. I set the standard
N -body units (Heggie, Mathieu 1986), such that G = M = −E = 1, where M
is the total mass of the cluster, E is the energy that the total binding energy of
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binaries is excluded from the total energy of the cluster. In this units, the virial
radius of the cluster, which can be regarded as typical cluster size, is 1. I set
that the cluster consists of N = 1 × 104 stars, and the semi-major axis of the
binary is 1 × 10−6. If I transform this units into astronomical units, assuming
that all the stars have 1M¯, and the semi-major axis of the binary is 0.5AU, the
virial radius, and the average velocity dispersion of the cluster are, respectively,
1pc, and 3km/s.

Consider that we perform N -body simulation of the cluster without the
special treatment. An energy error from the orbital integration of the binary
components dominates those from the orbital integration of the other stars.

The binding energy of the binary, and orbital energies of the stars except the
binary components and the center of mass of the binary depend, respectively, on
a separation between the binary components, and the distances from the cluster
center at which the origin of a coordinate system of the N -body simulation is,
where the orbital energies are the sum of kinetic and potential energies of these
stars. Even when the positions of the stars are expressed as double-precision
floating-point number, the effective digit of the separation between the binary
components is only 10, since the semi-major axis of the binary is 10−6, and the
typical distance between a star and the cluster center is 1. On the other hand,
the effective digits of their distances from the cluster center are 16.

When we integrate all the stars by one timestep, their distances from the
cluster center deviate from their true distances by much less than 10−8 due to
truncation or round off errors. The deviations must be less than 10−8 by several
order of magnitudes, otherwise it is meaningless to express the positions of the
stars as double-precision floating-point number. Since their distances from the
cluster center is typically 1, the error of the orbital energy of each star are
much less than 10−8 in the unit of each orbital energy. On the other hand, the
separation between the binary components deviate from the true separation by
at least ∼ 10−16 due to round off error. Since their separation is 10−6, the error
of the binding energy is at least 10−10 in the unit of the binding energy. The
error of the binding energy of the binary grows faster than that of the orbital
energy of each star by several order of magnitude at each timestep.

Average timestep of typical single star is a fraction of the dynamical time
at the virial radius, ∼ 3, and those of the binary components are a fraction of
the binary period, ∼ 10−7. We assume that both the fractions are equal, and
denoted by φ. The fraction φ depends on the accuracy needed for simulations,
and is typically from several tenth part to several hundredth part. The error of
the orbital energy of the typical single star is much less than 3/φ× 10−9 in the
unit of its orbital energy at each time unit, and the binding energy of the binary
is 1/φ×10−3 in the unit of the binding energy at each time unit, assuming that
the errors are systematically accumulated step by step. If the signs of the errors
in the orbital energies of all the single stars are the same, which is overestimate,
the sum of the errors in the orbital energy of all the single stars is 3/φtimes10−5

in the unit of the total orbital energy.
Since the total orbital energy is −0.25, the error of the total orbital energy is

8/φtimes10−6 in N -body standard units at each time unit. On the other hand,
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since the binding energy of the binary is −0.005, the error of the binding energy
is 5/φ × 10−6 at each time unit.

When we include the special treatment in the N -body simulation of the
cluster, we directly integrate not the binary components, but the center of
mass of the binary, and analytically solve the relative motion of the binary
components as two-body motion. The binding energy of the binary is perfectly
conserved, which is a good approximation, since the binary is sufficiently isolated
from the other stars. Then, total energy error is the sum of the errors of the
orbital energies of the stars other than the binary components, and the center
of mass of the binary. These errors grow much more slowly than that of the
binding energy of the binary without the special treatment as estimated above.
Therefore, the accuracy of the energy conservation increases.

If we again perform N -body simulation of the cluster without the special
treatment, we spend most time calculating the motion of the binary. The num-
ber of gravitational forces on the binary components that we have to calculate
is much larger than the total number of gravitational forces on other stars. The
number of gravitational forces on each star at each time unit, ngf , that we have
to calculate is estimated as follows:

ngf ∼
N

∆̄t
, (2.1)

where ∆̄t is average timestep of each star during each time unit. In the typical
star, ngf ∼ 3 × 103/φ, and in each binary component, ngf ∼ 1 × 1011/φ. The
sum of ngf of all the single stars, whose number is ∼ 104, is ∼ 3 × 107/φ, while
the sum of ngf of the binary components, whose number is 2, is ∼ 2 × 1011/φ.

We again include the special treatment in the N -body simulation of the
cluster. We integrate not the orbit of each binary component, but the orbit of
the center of mass of the binary. The average timestep ∆̄t of the center of mass
of the binary is its dynamical time, which is typically the dynamical time at the
virial radius, ∼ 3. The number of gravitational forces on the binary components,
ngf , decreases to 3× 103/φ. The sum of ngf of all the stars including the binary
also decreases from 2 × 1011/φ to 3 × 107/φ, owing to the special treatment.

2.2 Basic algorithm

I describe how to separate the integration of the relative motions of the binaries
from that of the other particles. GORILLA consists of time integrator part and
GORIMO. The time integrator part solves the equation of motion of individual
particles expressed as equation (1.2), using the fourth-order Hermite integration
scheme with individual timestep scheme (Makino, Aarseth 1992), and block
timestep scheme (McMillan 1986). In the time integrator part, each particle
has its own time, ti, its timestep, ∆ti, its position ri(ti), and so on. Among all
the particles, particles with the minimum ti + ∆ti are selected. The number of
the selected particles is not always one, since the time integrator part adopts
block timestep scheme. The time integrator part evaluates the force and solves
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equation (1.2) of the selected particles. The time integrator part are required to
send all the particle data to GORIMO at every block step, illustrated in figure
2.1.

The procedures of GORIMO are as follows.

(a) GORIMO searches for two particles isolated enough from the other parti-
cles.

(b) If such two particles (particles k and l) are found, GORIMO transforms
the position of the two particles to that of their center of mass and their
relative distance expressed as

rcm,kl =
mkrk + mlrl

mk + ml
, (2.2)

and

rrel,kl = rk − rl, (2.3)

where rcm,kl is the position of the center of mass of particles k and l, and
rrel,kl is the relative distance between particles k and l.

(c) GORIMO sends back data associated with motion of center of mass, rcm,kl,
to the time integrator part. The time integrator part integrates orbit of
the center of mass to the next block step as single particle whose mass is
mk + ml, using the approximated equation of motion as

(mk + ml)
d2rcm,kl

dt2
= −

N∑
j 6=k,l

{
Gmj

|rcm,kl − rj |2

[
mk

bkl,j

|bkl,j |3
+ ml

blk,j

|blk,j |3

]}

' −
N∑

j 6=k,l

[
G(mk + ml)mj

rcm,kl − rj

|rcm,kl − rj |3

]
, (2.4)

where

bkl,j =
rcm,kl − rj

|rcm,kl − rj |
+

ml

mk + ml

rrel,kl

|rcm,kl − rj |
, (2.5)

and

blk,j =
rcm,kl − rj

|rcm,kl − rj |
− mk

mk + ml

rrel,kl

|rcm,kl − rj |
. (2.6)

Here, I use |rcm,kl−rj | À |rrel,kl|, and obtain bkl,j ' (rcm,kl−rj)/ |rcm,kl − rj |,
and blk,j ' (rcm,kl − rj)/ |rcm,kl − rj |. We call this approximation isola-
tion.

(d) Using Kepler solution, GORIMO solves, to the next block step, the ap-
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proximated equation of motion for relative distance, rrel,kl, expressed as

mreduce,kl
d2rrel,kl

dt2
= −Gm1m2

|rrel,kl|2

×

[
rrel,kl

|rrel,kl|
− mj

mk + ml

∑
j 6=k,l

|rrel,kl|2

|rcm,kl − rj |2

(
bkl,j

|bkl,j |3
− blk,j

|blk,j |3

)]

' −Gmkml
rrel,kl

|rrel,kl|3
, (2.7)

where mreduce,kl is the reduced mass as mreduce,kl = mkml/(mk + ml).
Here, I also use |rcm,kl − rj | À |rrel,kl|, and obtain bkl,j ' (rcm,kl −
rj)/ |rcm,kl − rj |, and blk,j ' (rcm,kl − rj)/ |rcm,kl − rj |.

(e) GORIMO searches for two particles which are no longer isolated enough
from the other particles. If the two particles are found, GORIMO inversely
transforms equation (2.2) and (2.3).

In GORIMO, the isolation procedure is also applied to the hierarchical triple
system. GORIMO searches for the center of mass of two particles already in
isolation and one particle which are isolated enough from the other particles.
If such center of mass of two particles already in isolation and one particle are
found, GORIMO takes steps (b), (c), and (d). Here, either particle in these
steps is replaced by the center of mass of two particles already in isolation. Fur-
thermore, GORIMO searches for hierarchical triple systems which are no longer
isolated enough from the other particles. If such hierarchical triple systems are
found, GORIMO takes step (e). Here, either particle is also replaced by the
center of mass of two particles already in isolation.

I set three kinds of isolation conditions. The three isolation conditions for
particle k and l are as follow.

Isolation conditions (A)

1. Ebin,kl > 1kT0

2. |r3 − rcm,kl| > αrapo,kl

3. rperi,kl > α max(sk, sl)

Isolation conditions (B) (only for pairs of two particles)

1. Do not satisfy isolation conditions (A), and Ebin,kl > 0

2. ekl > 0.95

3. |r3 − rcm,kl| > βrrel,kl

4. rrel,kl · vrel,kl ≤ 0

Isolation conditions (C) (only for pairs of two particles)

1. Ebin,kl ≤ 0
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2. ∆tk ≤ ∆tmax/236 and ∆tl ≤ ∆tmax/236

3. |r3 − rcm,kl| > βrrel,kl

4. rrel,kl · vrel,kl ≤ 0

Here, Ebin,kl is the binding energy of particles k and l, expressed as

Ebin,kl = −
(

1
2

mkml

mk + ml
|vrel,kl|2 −

Gmkml

|rrel,kl|

)
, (2.8)

where vrel,kl = vk − vl. Here, r3 is the position of the nearest particle (or
center of mass of two particles and hierarchical triple systems in isolation) from
the center of mass of particles k and l, rcm,kl. The separations between parti-
cles k and l at the apocenter, rapo,kl, and pericenter, rperi,kl, are, respectively,
expressed as

rapo,kl = akl(1 + ekl), (2.9)

and
rperi,kl = akl(1 − ekl), (2.10)

where akl is the semi-major axis of particles k and l, expressed as

akl =
Gmkml

2|Ebin,kl|
, (2.11)

and ekl is the eccentricity of particles k and l, expressed as

ekl =

√
1 − Ebin,kl|rrel,kl × vrel,kl|

G2mkml(mk + ml)
. (2.12)

Here, max(sk, sl) expresses the larger value between sk and sl, and si (i =
k, l) is the size of particle (or center of mass of two particles and hierarchical
triple system) i. Particle i has si = 0, and the center of mass of two particles
in isolation has si equal to the separation at the apocenter between the two
particles. Through dimensionless quantities α (called apocentric parameter) and
β (called pericentric parameter), I decide the strictness of isolation. I discuss
appropriate apocentric and pericentric parameters in section 2.5.2.

In figure 2.2, I illustrate binaries in isolation with conditions (A) (upper
panel), and with conditions (B) (lower left panel), and unbound two particles in
isolation with condition (C). A binary with components k and l are in isolation
with conditions (A), if the other particles are not in the sphere centered on the
center of mass of the binary with radius αrapo,kl, where α is a dimensionless
quantity, and rapo,kl is the separation of the binary components k and l at
the apocenter. The binary are in isolation with conditions (B), if the other
particles are in the sphere centered on the center of mass of the binary with
radius αrapo,kl, but are not in the sphere centered on the center of mass of the
binary with radius βrrel,kl, where β is a dimensionless quantity, and rrel,kl is the
separation of the binary components k and l. Unbound two particles are also in
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isolation with conditions (C), if the other particles are not in the sphere centered
on the center of mass of the binary with radius βrrel,kl, and the timestep of both
the particles is sufficiently small as second condition in conditions (C).

The algorithm of GORILLA is described step-by-step in Appendix A.

2.3 How to use GORIMO

I describe application programming interface (API) of GORIMO in this section.
GORIMO is currently written in C language. I describe a part of an example
code to show how to use GORIMO from the time integrator part as follows.

/* initial settings */

(input initial conditions)

gorilla_init(filename, time, dtout, eta, eta_s,

dtmax, dtmin, eps2, n, ncom, index);

while(t<tend){

(select minimum dti and set global time)

(integrate particles with minimum ti + dti)

/* GORIMO */

gorilla_main(time, &n, t, dt, m, r0, v0, a0, j0, pot, nnb, ncom,

grapeflag, delflag, index);

}

Initial settings are done outside the while loop, and the while loop includes the
time integrator part and GORIMO.

The API of GORIMO is the following two functions:

• gorilla init: sends some parameters, such as output parameters and
accuracy parameters, to GORIMO, and receive initial status of isolation.

• gorilla main: sends data of all the particles to GORIMO, and receives
the information on the special treatment from GORIMO.

The definition of the function gorilla init is as follows.
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void gorilla_init(FILE *filename,

double time, /* global time */

double dtout,

double eta, /* accuracy parameter */

double eta_s, /* accuracy parameter for start up */

double dtmax, /* maximum timestep */

double dtmin, /* minimum timestep */

double eps2, /* square of softening parameter */

int n, /* the number of particles */

int ncom[],

int index[])

Through the function gorilla init, the time integrator part initially sends
some parameters to GORIMO. The argument filename points to file into which
the information on the special treatment is written. The information is divided
into two groups. One group is log of isolation: particle indexes for which iso-
lation starts and the time when the isolation starts, and particle indexes for
which isolation is finished and the time when the isolation is finished. The
other group is the internal information of all the binaries and hierarchical triple
systems in isolation, which is output at each dtout, the third argument. The
arguments eta and eta s are accuracy parameters. The arguments dtmax and
dtmin are the maximum and minimum of the timestep of the particles. The
argument eps2 is square of softening parameter. The argument n is the number
of the particles in the cluster. The argument index is the index of the particles
assigned by the time integrator at the initial time.

Exceptionally, the time integrator part receives the particle data from GORIMO
through the argument ncom. The argument ncom indicates whether it belongs
to particles, or the center of mass of two particles or hierarchical triple systems
in isolation. If the argument ncom is one, it is a particle, if the argument ncom
is two, it is the center of mass of two particles in isolation, and if the argument
ncom is three, it is the center of mass of hierarchical triple systems.

The definition of the function gorilla main is as follows:
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void gorilla_main(double time, /* global time */

int *n, /* the number of particles */

double t[], /* particle’s time */

double dt[], /* particle’s timestep */

double m[], /* mass */

double r0[][3], /* position */

double v0[][3], /* velocity */

double a0[][3], /* acceleration */

double j0[][3], /* time derivative of acceleration */

double pot[],

int nnb[],

int ncom[],

int grapeflag[],

int delflag[],

int index[])

Through the function gorilla main, the time integrator part sends the global
time, time, and the data of all the particles to GORIMO. The particle data
sent by the time integrator part are their times, t, timesteps, dt, masses, m, po-
sitions, r0, velocities, v0, accelerations, a0, time derivatives of the acceleration,
j0, potential, pot, and the indexes of the nearest particles, nnb.

The time integrator part also sends delflag to GORIMO. The argument
delflag is a flag whether the particle is deleted by GORIMO or not. If the
argument delflag of a particle is one, the particle is deleted by GORIMO,
otherwise it is not deleted. The deleting of the particles is used for particles
which are sufficiently far from the cluster, and seem not to affect the evolution
of the cluster any more.

Through the function gorilla main, the time integrator part receives the
total number of the particles and the center of mass in the integration list, n,
which decreases by one when one binary is formed, and the data of all the parti-
cles from GORIMO. The particle data received by the time integrator part are
their times, t, timesteps, dt, masses, m, positions, r0, velocities, v0, accelera-
tions, a0, time derivatives of the acceleration, j0, potential, pot, the indexes of
the nearest particles, nnb, and ncom.

Furthermore, the time integrator part receives grapeflag and index from
GORIMO. The argument grapeflag shows whether particles pointed by the
indexes are changed or not before and after GORIMO is called. If the particles
are changed, grapeflag is one, and if not, grapeflag is zero. The argument
index shows the initial indexes of the particles pointed by the indexes. The
argument grapeflag is used for the judgment whether particle data is sent to
GRAPE or not. If the indexes of the particles are changed, the particle data
should be sent, otherwise should not be sent.
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2.4 Test simulation

I perform test simulation of GORILLA. I simulate ten N = 1024 equal-mass
cluster without primordial binaries. I use Plummer’s model to generate the
initial distribution of these clusters, and use different random seeds. I adopt
N -body standard units (Heggie, Mathieu 1986), such that G = M = −E = 1,
where M is the total mass of the cluster, E is the energy that the total binding
energy of binaries and high-order hierarchical systems is excluded from the total
energy of the cluster. I adopt the accuracy parameter η = 0.01 and ηs = 0.0025,
and the apocentric and pericentric parameters, (α, β) = (10, 100). In the N =
1024 clusters, 1kT0 = 1.6 × 10−4. For force calculation, I use GRPAE-6A, a
special-purpose computer designed to accelerate N -body simulations (Fukushige
et al. 2005).

Figure 2.3 shows the time evolution of the total energies of the ten clusters
in N -body simulation by means of GORILLA, in which the time when core
collapse stops is about 300. The dashed horizontal lines show the energy error
1 %, i.e. −0.2475, and −0.2525. In nine runs, the energy errors are about 1 %.
However, in one run, the energy error exceeds well over 1 %. This is due to one
hierarchical triple system, described in detail in the next section.

2.5 Reliability

As seen in the previous subsection, the energy errors are relatively large: ∼ 1
% in nine of the ten simulations, and ∼ 10 % in one of the ten simulations. In
section 2.5.1, I find that most energy error arises from long-lived hierarchical
triple systems in which inner binaries are intermittently in isolation due to the
orbits of the third stars. The energy error is generated from the integration of
the orbits of the inner binaries when they are not in isolation, and from the
approximation of the orbits of the inner binaries in isolation. In section 2.5.2, I
find the optimal criteria of isolation such that both energy errors are suppressed
as low as possible. Even if we adopt the optimal criteria, the energy errors
become relatively large. In section 2.5.3, I discuss the effect of the energy error
from the hierarchical triple systems on structural parameters of the clusters.

2.5.1 Generation process of large energy error

Energy error from isolation

Before I show the generation process of large energy error, I describe what
generates energy error. There are two causes of energy error. One is the time
integration of orbits of particles. The other is isolation of binaries or hierarchical
triple systems.

To show the above argument, I perform orbital integrations of a hierarchical
triple system, and a binary. In the hierarchical triple system, particles have
equal mass, 1/16384. At the initial time, the inner binary has the binding
energy 100kT0 and the eccentricity 0.1, and the outer binary has the binding
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energy 5kT0 and the eccentricity 0.9, where 1kT0 = 1.0 × 10−5 in N -body
standard units. The orbit of the outer binary is retrograde with respect to the
inner binary. The orbits are drawn in figure 2.6. The binary of which I perform
the orbital integration is identical to the inner binary of the hierarchical triple
system. I adopt accuracy parameters η = 0.01 and ηs = 0.0025. The apocentric
parameter is set to be α = 10, and α = ∞ for the orbital calculation of the
hierarchical triple system and the binary, respectively.

Figure 2.4 shows the time evolution of the total energy error (black solid
line), the energy error due to isolation (red solid line), and the other energy
error (blue solid line) in the simulation of the hierarchical triple system. The
error due to isolation is the accumulation of the energy error before and after
isolation starts, or isolation is finished. Figure 2.5 shows the time evolution of
the other energy error in the simulation of the hierarchical triple system (blue
solid line), and the total error multiplied by 0.04 in the simulation of the binary
(black solid line).

From figure 2.5, we see that the other energy error in the simulation of the
hierarchical triple system (blue solid line) is in good agreement with the total
error multiplied by 0.04 in the simulation of the binary (black solid line). The
total error in the simulation of the binary is only due to the orbital integration,
and the time when the orbit of the inner binary in the hierarchical triple system
is integrated is 4 % of that when the orbit of the binary is integrated owing to
the isolation of the inner binary. The other energy error in the simulation of
the hierarchical triple system is only due to the orbital integration of the inner
binary.

Next, I explain only how the isolation generates energy errors, since the
former is trivial. In order to show how the isolation generates energy errors,
I follow the evolution of the above hierarchical triple system with and without
GORILLA. I adopt accuracy parameters η = 0.0025 and ηs = 0.00125. The
accuracy parameters are smaller than those in the previous N -body simula-
tion. This is because I make the energy errors from the integration sufficiently
small, and the energy errors from the isolation become pronounced. Since the
inner binary satisfies isolation conditions (A), I change the apocentric parame-
ter α = 10, and α = ∞ i.e. without GORILLA. We assume that the orbits of
the hierarchical triple system are correctly followed by the simulation without
GORILLA.

Figure 2.7 shows the total energy of the hierarchical triple system in the
N -body simulation with isolation (blue), and without isolation (red). The sim-
ulation is finished at the time when the phase of the outer binary returns to the
pericenter. The arrows show the time when isolation starts and is finished. The
total energy decreases by 1 × 10−6 after the isolation.

When the inner binary is in isolation, the total energy oscillates in the follow-
ing reason. The total energy of the hierarchical triple system, E3body, consists
of the binding energies of the inner binary, Ebin, and the outer binary, Ebout,
and the other energy, Eother, as follows:

E3body = Ebin + Ebout + Eother, (2.13)
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where the velocity of the center of mass of the hierarchical triple system is zero.
Suppose that the inner binary components are particle 1, and 2, and the third
star is particle 3, the above three energies are expressed as

Ebin =
1
2

m1m2

m1 + m2
|vrel,12|2 −

Gm1m2

|rrel,12|
, (2.14)

and

Ebout =
1
2

(m1 + m2)m3

m1 + m2 + m3
|vcm,12 − v3|2 −

G(m1 + m2)m3

|rcm,12 − r3|
, (2.15)

and

Eother = −Gm1m3

|rrel,13|
− Gm2m3

|rrel,23|
+
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(
3 cos2 ϕ − 1

2

)
, (2.16)

where the second equality in equation (2.16) is derived, assuming |rrel,12|/|rcm,12−
r3| ¿ 1, and ignoring higher terms than |rrel,12|2/|rcm,12 − r3|2, and the third
equality in equation (2.16) is derived, using the angle ϕ is between the vectors
rrel,12, and rcm,12−r3. When the inner binary is in isolation, its binding energy,
Ebin, is not changed. The binding energy of the outer binary, Ebout, is also not
changed, since the relative motion between the center of mass of the inner binary
and the third particle is two-body motion. The other energy, Eother, oscillates
with the rotation of the inner binary. The angle ϕ runs from −π radian through
π radian during a period of the inner binary, since that the vector rcm,12 − r3 is
hardly changed on the timescale.

Figure 2.8 shows the time evolution of the binding energies of the inner
binary, Ebin (top panel), and the outer binary, Ebout (middle panel), and the
other energy, Eother (bottom panel). The colors of the curves are the same as
in figure 2.7. The vertical dashed lines show the times when isolation starts and
is finished.

The energy error due to isolation arises from the following reason. Unless
isolation is used for the inner binary, the binding energy of the inner binary, Ebin,
oscillates (red lines in top panel of figure 2.8). The oscillations are reactions of
the oscillations of the other energy, Eother, as shown in equation (2.16). However,
if isolation is used, this binding energy, Ebin, is not changed when the inner
binary is in isolation (blue lines in top and middle panels of figure 2.8). This is
because the tidal force of the third particle is ignored. This binding energy at
the time when the isolation is finished is different from that at the same time
unless isolation is used for the inner binary.

With and without GORILLA, I additionally follow the evolution of the other
hierarchical system in which the binary satisfies isolation conditions (B), and
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investigate how the isolation generates energy errors. In the hierarchical triple
system, all particles have 1/16384. At the initial time, the inner binary has the
binding energy 100kT0 and the eccentricity 0.99, and the outer binary has the
binding energy 20kT0 and the eccentricity 0. The orbits are drawn in figure 2.9.
I adopt accuracy parameters η = 0.0025 and ηs = 0.00125 for the same reason
as in the above simulation. I change the pericentric parameter β = 10, and
β = ∞ i.e. without GORILLA.

Figure 2.10 shows the time evolution of the total energy of the hierarchical
triple system, E3body (upper left panel), the binding energies of the inner binary,
Ebin (upper right panel), and the outer binary, Ebout (lower left panel), and the
other energy, Eother (lower right panel). The blue dashed curves and red solid
curves show these energies in the N -body simulation with and without isolation,
respectively. The vertical dotted lines show the time when isolation starts (left),
and the time when isolation is finished (right) in the N -body simulation with
isolation.

Similarly to the case of the binary in isolation conditions (A), the energy
error due to isolation arises from the difference of the time evolutions of the
binding energies of the inner binaries between the cases with and without GO-
RILLA. Despite of the change of the binding energy of the inner binary in the
simulation without GORILLA, the binding energy of the inner binary is not
changed in the simulation with GORILLA (the upper right panel of 2.10). In
the simulation with GORILLA, the increase of the total energy of the hierar-
chical triple system before and after the isolation is equal to that of the binding
energy of the inner binary before and after the isolation (the upper left and
right panels of 2.10).

Hierarchical triple systems as large energy error sources

Even if a single particle approaches to a binary once, the energy error both
from the integration and isolation of the binary is sufficiently smaller than the
total energy of the cluster. However, when the penetrations to the binary are
repeated, the situation is changed. The repeat of the penetrations occurs in
hierarchical triple systems.

In fact, the 10 % energy error in one of the ten simulations is due to one
hierarchical triple system. In order to prove clearly that most energy error is
generated from the hierarchical triple system, I show figure 2.11 which draws
the time evolution of the total energy of the system (upper left panel), its
enlargement at the impulsive increase of the energy error, Etotal (upper right
panel), the total energy, E3body, of a hierarchical triple system present at the
time t ∼ 800 (lower left panel), and the difference between the total energy of
the system, and the hierarchical triple system (lower right panel). The difference
between Etotal and E3body are little changed (lower right panel).

35



2.5.2 Optimal criteria of isolation

As seen in previous section, most energy errors are generated from long-lived
hierarchical triple systems in which inner binaries are intermittently in isolation
due to the orbits of the third stars. To suppress the energy errors in the simu-
lations of the clusters is to minimize the energy errors from hierarchical triple
systems. In this section, I search for the optimal criteria of isolation which
minimize the energy errors from hierarchical triple systems.

For this purpose, I perform orbital integration of typical hierarchical triple
systems by means of GORILLA, changing the apocentric and pericentric pa-
rameters, α and β, respectively, and find the optimal criteria. After that, I
prove the parameters to be optimal criteria, performing N -body simulations of
clusters with primordial binaries.

The typical hierarchical triple systems are as follows. The outer binaries have
to be robust against the perturbation of the other stars. Therefore, the binding
energies of the outer binaries are more than 1kT0. The inner binaries have to be
harder than the outer binaries by factor of at least ten. The hierarchical triple
systems are long-lived only when the inner binaries are rather isolated from the
third stars.

I use the two hierarchical triple systems in section 2.5.1 whose orbits are
drawn in figure 2.6 and 2.9. They are treatable, since they satisfy either isolation
conditions (A) or (B). First, I investigate the former hierarchical triple system
for the apocentric parameter, α, and subsequently the latter hierarchical triple
system for the pericentric parameter, β.

I perform orbital integration of the hierarchical triple system whose orbits are
drawn in figure 2.6 with different apocentric parameter α = 5, 10, 20, and 40, and
without isolation. I adopt the accuracy parameters η = 0.01 and ηs = 0.0025, in
which the simulations in section 3 can be finished within acceptable computing
time.

Figure 2.12 shows the time evolution of energy errors. As the apocentric pa-
rameter α becomes larger, the evolutions of the energy errors become smoother.
This is because the energy errors from the integration are generated smoothly,
and become dominant as the apocentric parameter α becomes larger. In the
apocentric parameter α = 10, the energy error is smallest. Figure 2.13 shows the
total energy errors, that from isolation, and that from integration at the time
when the simulations are finished as a function of the apocentric condition α.
The energy errors from isolation, and from integration are balanced at α = 10.

Figures 2.12 and 2.13 mean that I should adopt the apocentric parameter
α ≤ 10. If the hierarchical triple system lasts for more than 0.125 time units,
the energy error in the apocentric parameter α = 10 will be larger than that in
the apocentric parameter α = 5. This is because the former energy error is more
strongly occupied by energy error from the integration, which is systematically
accumulated, and less strongly by energy error from the isolation, which is
diffusive spread.

I perform orbital integration of the hierarchical triple system whose orbits
are drawn in figure 2.9 with the pericentric parameter β = 5, 6, 7, · · · , 999, 1000
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during 1 period of the inner binary. I also adopt the accuracy parameter η =
0.01, and ηs = 0.0025. Figure 2.14 shows the total energy error (black), the
energy error from integration (blue), and the energy error from isolation (red)
as a function of the pericentric parameter β. The total energy error is minimized
around β = 100, in which the energy errors from integration and from isolation
are balanced. It is valid that I adopt the pericentric parameter β = 100.

I perform N -body simulations of clusters to conform whether the above
apocentric and pericentric parameters minimizing energy errors is applicable
not only to hierarchical triple systems, but also N -body systems. I adopt N -
body standard units. The clusters have equal-mass and point-mass particles
whose number is 1024, not 16384 unlike in section 3. This is because I perform
many runs. The mass fraction of primordial binaries is 10 %, and the binding
energies of all the binaries are 300kT0 (1kT0 = 1.6 × 10−4), which is expected
to generate the largest energy error among simulations in section 3. The eccen-
tricity distribution of the primordial binaries is thermal distribution, f(e) = 2e.
The other orbital elements of the primordial binaries, such as the inclination,
the longitude of the ascending node, and the argument of pericenter with re-
spect to the clusters and the phase are distributed at random. I use Plummer’s
model to generate the initial distribution of both single stars and center of mass
of primordial binaries in the clusters.

I parameterize the apocentric parameter α, and the pericentric parameter
β, and set (α, β) = (5, 100), (10, 100), (20, 100), (10, 10), (10, 1000). I adopt the
accuracy parameter η = 0.01 and ηs = 0.0025. At each pair of the apocentric
and pericentric parameters, I perform five runs.

Figure 2.15 shows the time evolution of the energy error, ∆E, of one run at
each set of the apocentric and pericentric parameters. The impulsive increases
of the energy errors are due to the appearance of hierarchical triple systems.
Figure 2.16 shows the time when the energy errors are beyond 1 % in the N -
body simulations of the above clusters. Here, the criterion of the energy error
is the energy that the total binding energy of binaries and high-order hierar-
chical systems is excluded from the total energy of the cluster, i.e. E = −0.25.
Therefore, 1 % of the total energy is 0.0025. In the left panel, the apocentric
parameter α is changed, keeping the pericentric parameter β constant, and in
the right panel, vice versa. As seen in this figure, the times when the energy
errors exceed 1 % are relatively large in the apocentric parameter α = 10, and
the pericentric parameter β = 100. This is in good agreement with the case of
the above hierarchical triple systems.

2.5.3 Influence of energy error on structural parameters

By means of GORILLA, the accuracy of energy error is at best ∼ 1 %. In this
section, I describe no dependence of quantities we use in section 3 on energy
errors. The quantities are structural parameters of clusters.

I perform N -body simulations of clusters in which N = 4096, particles are
equal-mass and point-mass, mass fraction of primordial binaries is 10 %, and the
binding energy of all the binaries is 300kT0. The settings of the other parameters
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of the binaries are the same as in the above clusters in which N = 1024, mass
fraction of primordial binaries is 10 %, and the binding energy of all the binaries
is 300kT0. I adopt the N -body standard units, the accuracy parameter η =
0.01 and ηs = 0.0025, and the apocentric and pericentric parameters, (α, β) =
(2, 100), (5, 100), (10, 100), and (10, 10). In this units, 1kT0 = 4.1 × 10−5. At
each set of the apocentric and pericentric parameters, I perform three runs
with different random seeds. I use the clusters with N = 4096, since several
runs are possible in acceptable computing time, and fluctuations of structural
parameters on dynamical timescale are suppressed. Figure 2.17 shows the time
evolution of energy errors. The upper left, upper right, lower left, and lower
right panels are, respectively, the apocentric and pericentric parameters (α, β) =
(2, 100), (5, 100), (10, 100), and (10, 10).

I describe about Lagrange radii as an example of structural parameters.
Figure 2.18 shows the time evolution of 1, 10, 50, and 80 % Lagrange radii
from bottom up. The colors of the curves correspond to those of the curves in
figure 2.17. The Lagrange radii of the clusters in the apocentric and pericentric
parameters (α, β) = (2, 100), and (10, 10) (red and magenta curves, respectively)
are not different from those of the clusters in the apocentric and pericentric
parameters (α, β) = (5, 100), and (10, 100) (blue and aqua curves, respectively)
in the respect of the time-averaged size over several ten time units. In the former
runs, the energy errors are ∼ 10 %, and in the latter runs, less than 1 %.

The time averaged Lagrange radii over several ten time units are independent
of the energy errors, even if it is the most inner radius, i.e. 1 % Lagrange radius.
The energy error does not affect the structural parameters of clusters very much.
This is because a large fraction of the energy errors goes to the binding energy
of the inner binaries in the hierarchical triples generating large energy errors as
is seen in top panel of figure 2.8, and upper right panel of 2.10).

2.6 Comparison with other codes

I compare simulation results by means of GORILLA with those by means of
NBODY4, and kira. For GORILLA, I use the simulation results in section 2.4.
For NBODY4 and kira, I use the simulation results of Anders et al. (2007), who
have performed ten N = 1024 clusters without primordial binaries by means of
NBODY4, and thirty N = 1024 clusters without primordial binaries by means
of kira. Their results are shown in figure 2.20.

In figure 2.19, I show the core radii, rc, and half-mass radii, rh, of ten
N = 1024 clusters in gray dots. I obtain the core radii in the way of Casertano
and Hut (1985). Solid lines show the average values over these clusters at each
time. Figure 2.20 shows the simulation results of Angers et al. (2007). The times
when core collapses stop are ∼ 300 in the three codes. The average core radii,
half-mass radii, and kinetic energies are, respectively, ∼ 0.1, ∼ 3, and ∼ 0.2 at
the time when the simulations are finished in the three codes. My results by
means of GORILLA agree with those by means of kira and NBODY4.
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Figure 2.1: Illustration of the structure of GORILLA.

39



� rapo,kl

rapo,kl

�
rrel,kl

rrel,kl

Isolation conditions (A)

Isolation conditions (B)

� rapo,kl

Particle

k

k l

l

�
rrel,kl

rrel,kl

Isolation conditions (C)

k

l

Figure 2.2: Illustration of binaries in isolation with conditions (A) (upper panel),
and conditions (B) (lower left panel), and unbound two particles in isolation with
conditions (C) (lower right panel).
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Figure 2.3: Time evolution of the total energies of ten clusters with N = 1024
and without primordial binaries.
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Figure 2.4: Time evolution of the total energy error (black solid line), the energy
error due to isolation (red solid line), and the other energy error (blue solid line).
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Figure 2.5: The time evolution of the other energy error in the simulation of
the hierarchical triple system (blue solid line), and the total error multiplied by
0.04 in the simulation of the binary (black solid line).
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Figure 2.6: The internal motions of the isolated hierarchical triple system which
is in isolation in a part of the phase of the outer binary when the apocentric
condition α = 5 ∼ 60.

Figure 2.7: The time evolution of the total energy of the hierarchical triple
system in figure 2.6 with GORILLA of the apocentric condition α = 5 (blue)
and without GORILLA (red).
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Figure 2.8: The time evolution of the binding energies of the inner binary (upper
panel) and the outer binary (middle panel), and the other energy (lower panel),
whose definitions are in main text. The blue and red curves are, respectively,
calculated with and without GORILLA.
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Figure 2.9: The internal motions of the isolated hierarchical triple system which
is in isolation around at the pericenter of the inner binary when the pericentric
condition β ≤ 1000.
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Figure 2.10: The time evolution of the total energy (upper left), the binding
energies of the inner binary (upper right) and outer binary (lower left), and the
other energy (lower right) in the hierarchical triple system in figure 2.9. The
blue dashed curves and red solid curves show these energies in the simulations
with isolation and without isolation, respectively. The vertical dotted lines show
the time when isolation starts, and when isolation is finished.
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Figure 2.11: Time evolution of the total energy of the system (upper left), its
enlargement at the impulsive increase of the energy error, Etotal (upper right
panel), the total energy, E3body, of a hierarchical triple system present at the
time t ∼ 800 (lower left panel), and the difference between the total energy of
the system, and the hierarchical triple system (lower right panel).
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Figure 2.12: The time evolution of the hierarchical triple system in figure 2.6
with GORILLA of the apocentric conditions α = 5, 10, 20, and 40, and without
GORILLA.
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Figure 2.13: The total energy error, and energy errors from integration and
from isolation at the time when simulations are finished in figure 2.12, with
GORILLA of the apocentric conditions α = 5, 10, 20, and 40.
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Figure 2.14: The total energy error (black), the energy error from integration
(blue), and the energy error from isolation (red) as a function of the pericentric
condition β.
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Figure 2.15: The time evolution of the energy error, ∆E of one run at each
set of the apocentric condition α, and pericentric condition (β) indicated beside
each curve.
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Figure 2.16: The time when energy errors are beyond 1 % as a function of the
apocentric condition α (left), and the pericentric condition β (right).

53



-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

� E
( � , � )=(2,100) ( � , � )=(5,100)

-0.03

-0.02

-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0  200  400  600  800  1000

� E

t

( � , � )=(10,100)

 0  200  400  600  800  1000
t

( � , � )=(10,10)

Figure 2.17: Time evolution of energy errors in N -body simulations of clusters
with N = 4096, and 300kT0 primordial binaries. The apocentric and pericentric
parameters are (α,β) = (2, 100) (upper left), (5, 100) (upper right), (10, 100)
(lower left), and (10, 10) (lower right).
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Figure 2.18: Time evolution of 1, 10, 50, and 80 % Lagrange radii from bottom
up. The colors of the curves correspond to those of the curves in figure 2.17.
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Figure 2.19: The time evolution of Core radius rc (top), and half-mass radius rh

(bottom). Dots show radii of ten clusters with N = 1024 single stars. Solid lines
show core radius and half-mass radius averaged over those of the ten clusters
with N = 1024 single stars at each time.
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Figure 2.20: The time evolution of Core radius rc (top), and half-mass radius
rh (bottom). Dots show radii of several ten clusters with N = 1024 single stars.
Solid lines show core radius and half-mass radius averaged over those of these
clusters with N = 1024 single stars at each time. All quantities are obtained by
Anders et al. (2007), using kira (black), and NBODY4 (green/gray).
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Chapter 3

Effect of Hardness of
Primordial Binaries on
Evolution of Star Clusters

3.1 Simulation methods

I investigate the evolution of star clusters with primordial binaries by means
of N -body simulations of point-mass particles. I simulate eleven N = 16384
equal-mass cluster models as shown in table 3.1, each of which contains pri-
mordial binaries with equal binding energy. These cluster models have different
binding energies of the primordial binaries, Ebin,0, and mass fractions of the
primordial binaries, fb,0. In table 1, Nb,0 is the number of the primordial bina-
ries. Additionally, I simulate two reference models as soft and hard limits; an
N = 16384 equal-mass cluster model without primordial binaries, and a cluster
model in which all binaries are replaced by stars with double mass in the case
of fb,0 = 0.1. The fifth and sixth columns in table 3.1 are the mass fraction
of the double mass stars, fd,0, and the number of the double mass stars, Nd,0,
respectively. We adopt N -body standard units again. For N = 16384 cluster,
1kT0 = 1.0 × 10−5.

In all the cases, I use Plummer’s model to generate the initial distribution
of both single stars and center of mass of primordial binaries in the clusters.
The eccentricity distribution of the primordial binaries is thermal distribution,
f(e) = 2e. The other orbital elements of the primordial binaries, such as the
inclination, the longitude of the ascending node, and the argument of pericenter
with respect to the clusters, and the phase are distributed at random.

I use an N -body simulation code for the star cluster, GORILLA described in
the previous section. The accuracy, and apocentric and pericentric parameters
I adopt are shown in table 3.2. The apocentric and pericentric parameters
become larger as the binding energy of the primordial binaries are larger, and
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the number of the primordial binaries are larger. Energy error per one isolation
are larger in binaries with larger binding energy. Hierarchical triple systems are
more easily formed in clusters with the larger number of primordial binaries. My
N -body simulations are performed on GRAPE-6A, a special-purpose computer
designed to accelerate N -body simulations (Fukushige et al. 2005).

Figure 3.1 shows the time evolution of energy errors in the above cluster
models. They are within 1 % of the energy that the total binding energy of
binaries and high-order hierarchical systems is excluded from the total energy
of the cluster (∼ 0.0025). Naturally, they are within 1 % of the total energy of
the clusters.

3.2 Core evolution and binary properties

We first see the core radii, rc, and the half-mass radii, rh, in the fb,0 = 0.1
models. Figure 3.2 shows the time evolution of the core radii and half-mass
radii of seven fb,0 = 0.1 cluster models, and models No-binary and Double.
I calculate the core radii as in Casertano and Hut (1985) with modifications
described in McMillan et al.(1990). I calculate the core radii and half-mass
radii at each time unit, and average these radii over 10 time units.

In models No-binary, 1kT0−0.1, and 3kT0−0.1, the clusters experience deep
core collapse, and gravothermal oscillations occur. The core radii at the halts
of the core collapse are 0.002 − 0.004. In models 10kT0 − 0.1, 30kT0 − 0.1, and
100kT0 − 0.1, the core collapse stops halfway, although the cores contract more
slowly. The core radii at the halts of the core collapse are 0.05− 0.1. In models
300kT0 − 0.1, and Double, the clusters also experience deep core collapse. In
model Double, gravothermal oscillations occur. The core radii at the halts of
the core collapse are 0.005 − 0.02. Among the clusters that experience deep
core collapse, the times when the core collapse stops and core bounce occurs are
different. In models No-binary, and 1kT0 − 0.1, t ∼ 3400, in model 3kT0 − 0.1,
t ∼ 4700, and in models 300kT0 − 0.1, and Double, t ∼ 1700 − 2100.

Next, we see the evolution of binary properties throughout the rest of this
subsection. Figure 3.3 shows in the thick curves the increase of the total binding
energy of the binaries, ∆Ebin,tot(t), in the fb,0 = 0.1 models, and models No-
binary and Double. The arrows indicate the times when the core collapse stops.
The increase ∆Ebin,tot(t) is given by

∆Ebin,tot(t) =
Nb(t)∑

i

Ebin,i(t) −
Nb(0)∑

i

Ebin,i(0), (3.1)

where Ebin,i(t) is the binding energy of i-th binary at time t, Nb(t) is the number
of the binaries at time t including binary escapers, and ∆Ebin,tot(t) corresponds
to energy released by all the binaries. We can see that, in models No-binary,
1kT0−0.1, and Double, the binaries do not release energy until the core collapse
stops. In model 3kT0 − 0.1, the binaries release energy from t ∼ 1000. In the
other models, the binaries release energy from t ∼ 0.
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Figure 3.3 shows in the thin curves the time evolution of the total energy
of escapers, Eesc,tot(t), in the fb,0 = 0.1 models, and models No-binary and
Double. The escapers are defined as stars, regardless of single stars, binaries,
or hierarchical triple systems, satisfying both conditions as follows.

(a) The sum of the kinetic and potential energy of the single star (or the center
of mass of the binary or hierarchical triple system) is positive.

(b) The distance between the star and the center of the cluster is more than
40 length units.

We can see that, in models No-binary, 1kT0 − 0.1, and Double, the total
energy of escapers is small just before the halts of the core collapse, such that
Eesc,tot(t) ∼ 1×10−3. In model 300kT0−0.1, the thin curve is almost overlapped
with the thick curve, which indicates that the escapers carry away almost all
energy released by the binaries. In other models, Eesc,tot(t) at the halts of core
collapse is larger than those of models No-binary, 1kT0 − 0.1, and Double by an
order of magnitude.

Figure 3.4 shows the time evolution of the number of binaries, Nb, in the
models fb,0 = 0.1, No-binary, and Double. For model Double, the number of
the double mass stars is also plotted. In each panel, the thick curve shows the
number of binaries (or double mass stars) within the cluster, and the thin curve
shows the total number of binaries (or double mass stars) including escapers.
The arrows indicate the times when the core collapse stops.

We can see that, in model No-binary, the binaries increase after deep core
collapse. These binaries are the three-body binaries. In models 1kT0 − 0.1,
and 3kT0 − 0.1, the numbers of the binaries rapidly decrease before deep core
collapse. After deep core collapse, the total numbers of binaries including binary
escapers increase. In these models, the three-body binaries are also formed. In
models 10kT0−0.1, 30kT0−0.1, 100kT0−0.1, and 300kT0−0.1, the numbers of
the binaries monotonically decrease. In model Double, the three-body binaries
are formed after deep core collapse. The total number of these binaries including
the escapers is 27 at t = 5000. The number of the binaries composed of the
two double mass stars is 25. Two binaries are composed of one double and one
single mass stars. Nearly all binaries are composed of the double mass stars.
The number of the binaries within the cluster is 2, both of which are composed
of the two double mass stars. In this model, the number of the double mass
stars monotonically decreases.

Figure 3.5 shows the number distribution, Nb, of the binding energy of the
binaries, Ebin, in unit of kT0 in the fb,0 = 0.1 models. The size of energy bin
is 0.1 in log10 Ebin, where the unit of Ebin is kT0. In models 1kT0 − 0.1, and
3kT0 − 0.1, I choose t = 3000, before which the deep core collapse has occurred,
because I want to exclude three-body binaries. In the other models, I choose
the times at which I stop the simulations. In all models, the peaks around the
initial binding energies, Ebin, can be seen. The distributions of the binding
energy spread towards the larger sides.
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In figure 3.6, dots show the binding energies and distances from of the cluster
center of all the binaries in models 1kT0−0.1, 3kT0−0.1, 10kT0−0.1, 30kT0−0.1,
100kT0 − 0.1, and 300kT0 − 0.1 at the time indicated in the panels. The dashed
lines show the half-mass radii and twice the core radii at the time. Within the
half-mass radii, the distributions of the binding energies are greatly changed
from those at the initial time in all the models except models 1kT0−0.1, 3kT0−
0.1, 10kT0 − 0.1, and 30kT0 − 0.1. The distributions of the binding energies in
these models are similar. The distributions center on about 100kT0, and range
from more than 10kT0 to 300kT0. On the other hand, outside the half-mass
radii of these models, the distributions of the binding energies are little changed
from the initial time, which is consistent with the fact that the peaks of the
distributions are around the initial binding energies. In models 100kT0 − 0.1
and 300kT0−0.1, even inside the half-mass radii, the distributions of the binding
energies are not changed. This is because the cross sections of the binaries for
binary-single and binary-binary encounters are too small to change their binding
energies during my simulation time.

Figure 3.7 shows the time evolution of the mass fraction, fb, of the binaries
inside the core radii (upper curves) and half-mass radii (lower curves) in the
fb,0 = 0.1 models, and model No-binary. For model Double, mass fraction, fd,
of the double mass stars are shown. In model 1kT0−0.1, both the fractions inside
the core and half-mass radii decrease from 0.1 to 0.02 at the time when the deep
core collapse occurs. In model 3kT0 − 0.1, the fraction inside the core radius
increases up to 0.3 at t ∼ 1000, and decreases down to ∼ 0.04 at the time when
the deep core collapse occurs. In models 10kT0 −0.1, 30kT0 −0.1, 100kT0 −0.1,
300kT0 − 0.1, and Double, the fraction inside the core radii increases until the
core collapse stops. After that time, the fraction stops increasing.

Figure 3.8 shows the time evolution of the mean kinetic energy of the sin-
gle stars, Ekin,ave,s, inside the core radii (solid curves) and the half-mass radii
(dashed curves) in the fb,0 = 0.1 models, and models No-binary and Double.
In models No-binary, 1kT0 − 0.1, 300kT0 − 0.1, and Double, at the moment of
core collapse, the mean kinetic energies of the single stars in the cores increase
about two times more than those at the initial time. On the other hand, they
nearly keep constant during the evolution in models 3kT0 − 0.1, 10kT0 − 0.1,
30kT0 − 0.1, and 100kT0 − 0.1.

Figure 3.9 shows the time evolution of the mean kinetic energy of the bina-
ries, Ekin,ave,b, inside the core radii in the fb,0 = 0.1 models. I do not show those
inside the half-mass radii, since they are nearly the same as inside the core radii.
The fluctuation is large in model 1kT0 − 0.1, since the number of the binaries is
small. Except model 1kT0 − 0.1, the mean kinetic energy of the binaries in the
core keep nearly constant during the evolution. In model 1kT0 − 0.1, the mean
kinetic energy largely increases at the deep core collapse.
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3.3 Interpretation

On both softer (models No-binary, 1kT0 − 0.1, and 3kT0 − 0.1) and harder
(models 300kT0 − 0.1, and Double) hardness, the clusters undergo deep core
collapse. Here, binaries with small binding energy are soft, and those with
large binding energy are hard. On the other hand, in the intermediate hardness
(models 10kT0−0.1, 30kT0−0.1, and 100kT0−0.1), the clusters exhibit shallower
core collapse. The depth of the core collapse depends on the amount of energy
heating core generated by the primordial binaries. The larger the amount of
energy is, the shallower core collapse becomes, and vice versa.

The amount of the energy heating the core depends on whether the pri-
mordial binaries become harder or not through binary-single and binary-binary
encounters, and whether the single stars and binaries heated by such encounters
are ejected or not from the clusters. Whether the binaries become harder or
not depends on whether the binding energy of the binaries is larger or not
than a critical energy Ecrit,H, which, in this case, corresponds to the aver-
age kinetic energy of the surrounding single stars, Ekin,ave,s (Heggie’s law).
If Ebin . Ecrit,H ∼ Ekin,ave,s, the binaries are on average destroyed through
binary-single encounters. Therefore, the binaries cannot heat the core. If
Ebin & Ecrit,H, the binaries become harder and harder through series of binary-
single encounters, and then heat the core. In Plummer’s model, which is the
initial condition of my clusters, the average kinetic energy of the single stars is
about 2.5kT0, which can be seen in figure 3.8. Therefore,

Ecrit,H ∼ Ekin,ave,s ∼ 2.5kT, (3.2)

where kT is the average stellar kinetic energy in the whole cluster at a given
time, and I assume that the structure of the cluster at any time is similar to
those at the initial time.

Whether the single stars and binaries heated through encounters are ejected
or not depends on whether the kinetic energies transformed from the binding
energies of binaries are larger or not than the potential depth of the whole
cluster. The increase of the binding energy at single binary-single encounter,
∆Ebin, is on average ∆Ebin ' 0.4Ebin (Heggie 1975). According to conservation
of momentum, two-third of the energy released by the binaries goes to the single
star, and the rest goes to the binary, on average. The condition to eject both the
single star and binary is ∆Ebin/3 > 2m|Φc|, where m is the mass of the single
mass stars, and Φc is the potential of the core. If I define a critical energy for
ejection as Ecrit,E, 0.4Ecrit,E/3 > 2m|Φc|. In Plummer’s model, m|Φc| ' 10kT .
Therefore, the ejection occurs when

Ebin > Ecrit,E ∼ 6
0.4

m|Φc| = 150kT. (3.3)

In summary, whether primordial binaries can heat the core or not are differ-
ent among three ranges of hardness divided by two critical hardness Ecrit,H and
Ecrit,E; (a) Ebin . Ecrit,H, (b) Ecrit,H . Ebin . Ecrit,E, and (c) Ebin & Ecrit,E,
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which are illustrated in figure 3.10. Here, we can regard kT at the halt of the
core contractions as kT0 in all the model (figure 3.8). If Ebin . Ecrit,H (soft
range), the primordial binaries are destroyed through encounters, and can not
heat the core. If Ecrit,H . Ebin . Ecrit,E (intermediate hard range), the pri-
mordial binaries become harder and harder and continually heat the core. If
Ebin & Ecrit,E (super hard range), the primordial binaries release their binding
energy to the surrounding stars and binaries, but the stars and binaries are
ejected from the cluster, and then the primordial binaries cannot heat the core.
In the following sub-subsections, we see the simulation results for each range of
hardness.

3.3.1 Soft range

In the soft range, Ebin . Ecrit,H(∼ 2.5kT ), the primordial binaries are destroyed
through encounters, and cannot heat the core. We can see, in figure 3.4 (the
second left panel), the number of binaries for model 1kT0−0.1 rapidly decreases,
and, in figure 3.3 (the second left panel), primordial binaries do not release
energy from the beginning. After then, their evolutions are almost identical to
the case without primordial binaries, and lead to deep core collapse. Figure
3.2 and 3.3 (the first and second left panels) show that the core evolution and
energy generations are very similar between models No-binary and 1kT0 − 0.1.

Model 3kT0 − 0.1 exhibits a mixed behavior between soft and intermediate
hard ranges. While the number of binaries rapidly decreases, shown in figure 3.4
(the third left panel), the binding energy are continually released, shown in figure
3.3 (the third left panel). A population whose binding energy is harder than
initial value can be seen in figure 3.5 (the second left upper panel). Although
that heating is not so large to stop core collapse, it makes the time to the
core collapse longer, compared to the case without primordial binaries, shown
in figure 3.2 (the first, second, and third left panels). Note that at the very
beginning the number of binary in the core increase, shown in figure 3.7 (the
third left panel), and then turns to decreasing, which is due to mass segregation
of single star and binary, and sinking of binary to the core.

3.3.2 Intermediate hard range

In the intermediate range, Ecrit,H(∼ 2.5kT ) . Ebin . Ecrit,E(∼ 150kT ), the
primordial binaries continually heat the core, and becomes harder and harder.
We can see in figure 3.3 (the fourth, fifth, and sixth left panels) the primordial
binaries release the binding energy, and in figure 3.5 (panels 10kT0−0.1, 30kT0−
0.1, and 100kT0 − 0.1), populations whose binding energy become harder from
initial values can be seen. The continually released heat halts the core collapse
halfway.
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3.3.3 Super hard range

In the super hard range, Ebin & Ecrit,E(∼ 150kT ), the kinetic energy trans-
formed from binding energy of primordial binaries through encounters is so
large to be ejected from whole cluster immediately, and the primordial binaries
cannot heat the core. Figure 3.3 (the second right panels) shows the released
binding energy in total (in the thick curves), and those of escapers (in the thin
curve) are very close in model 300kT0 − 0.1, which means almost all released
energy from the primordial binaries is brought away from the cluster by the
escapers. Therefore, the primordial binaries can neither heat the core, nor stop
core collapse. Their evolutions become similar to the case in which binaries are
replaced by the double mass stars, which is shown in figure 3.2 (first and second
right panels). Note that the energy generation rate itself does not depend on
the binding energy, Ebin, in the super hard range. While energy generation
through a single encounter becomes larger for larger Ebin, encounter rate be-
comes smaller. Both are canceled out, which shown in Heggie and Hut (1993)
quantitatively.

3.4 Comparison of core size between theoretical
estimate and simulation results

In this section, I investigate whether the core radii of the clusters after halt of
core contraction in the above simulations is in agreement with the core radii ob-
tained by theoretical estimates or not. In section 3.4.1, I describe the theoretical
formula of the core radii. I compare the theoretical formula with the clusters
at the time when core contractions stop in my simulation in section 3.4.2, and
with the clusters after core contractions stop in my simulation in section 3.4.3.

3.4.1 Theoretical formula

I theoretically estimate core size at the halt of core contraction, using energy
balance between the energy carried away by stars escaping from the cluster at
each unit time, dEh/dt, and the energy which is provided for the core through
binary interactions at each unit time, dEc/dt, such as

dEh

dt
=

dEc

dt
. (3.4)

The argument here and hereafter is based on VC94.
The energy carried away by stars escaping from the cluster at each unit time,

dEh/dt, is given by
dEh

dt
=

|E|
γtrh

≈ 0.2
γ

GM2

trhrh
, (3.5)

where trh is the half-mass relaxation time, expressed as equation (1.1), and γ is a
numerical coefficient relating the energy outflow rate to the half-mass relaxation
time. I use the relation γ ≈ 10, and |E| ∼ 0.2GM2/rh, which comes from virial
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theorem, |E| ∼ GM2/4rv, where rv is the virial radius, and rh ∼ 0.8rv in
Plummer’s model.

The energy which is provided for the core by binary interactions at each unit
time, dEc/dt, is expressed as

dEc

dt
= Vc

G2m3

vs,c
nc

2 (Abs + Abb) (3.6)

where Vc is the core volume, vs,c is one dimensional velocity dispersion of single
stars in the core, nc is the total number density of the single stars and binaries
in the core, and Abs and Abb are, respectively, dimensionless efficiency factors
for energy provided for a cluster through binary-single and binary-binary inter-
actions. The core volume, Vc, is given by Vc = (4π/3)λr3

c , where λ is a free
parameter nearly equal to unity.

Substituting equations (3.5) and (3.6) into equation (3.4), I express the ratio
of the core to half-mass radii at the halt of core collapse as

rc

rh
=

0.0196λ

log10(0.4N)

(
vs,c

vh

)3 ( γ

10

)
(2 − fb,c)4 (Abs + Abb) (3.7)

where fb,c is mass fraction of binaries in the core, vh is the one dimensional half-
mass velocity dispersion, and |E| ∼ 3Mvh

2/2 i.e. 3vh
2/2 ∼ GM/5rh. Here, I

define the core radius as

rc =

√
9vc

2

4πGρc
=

√
9vs,c

2(2 − fb,c)2

16πGmnc
, (3.8)

where vc
2 = vs,c

2(2 − fb,c)/2 and ρc = 2mnc/(2 − fb,c) are, respectively, the
average velocity dispersion and mass density in the core.

Such dimensionless efficiency factors are, respectively, expressed as

Abs =
(

2(1 − fb,c)
2 − fb,c

)(
fb,c

2 − fb,c

) ∫
f(x) [g(x)h(x) + g′(x)] dx, (3.9)

and

Abb =
1
2

(
fb,c

2 − fb,c

)2 ∫
f(x1)f(x2)G(x1, x2)H(x1, x2)dx1dx2, (3.10)

where x, x1, and x2 are the binding energy of the binaries in the unit of kT .
The function f(x) is the distribution function of the binding energies of the
binaries in the core. The functions g(x), g′(x) and G(x1, x2) are, respectively,
the dimensionless hardening rates of the binary with the binding energy x which
is not destroyed in a sea of single stars, the binary with the binding energy x
which is destroyed in a sea of single stars, and the binary with the binding
energy x1 in a sea of binaries with the binding energy x2. The functions h(x)
and H(x1, x2) are, respectively, the efficiency ratios of heating of the core to
hardening of the binaries at each interaction between a single star and a binary
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with the binding energy x, and that between binaries with the binding energies
x1, and x2. The h(x) and H(x1, x2) become less than unity when single stars
and binaries involved with encounters are ejected from the cluster immediately
after the encounters. When the binaries are destroyed through binary-single
encounters, h(x) = 1, since they are hardly ejected.

The dimensionless hardening rate g(x) is expressed as

g(x) = 1.66
( x

C

)−1
∫

Rbs(x/C,∆)∆d∆, (3.11)

where Rbs is the dimensionless rate of the interactions that the binary with
the binding energy x hardens to the binding energy (1 + ∆)x in a sea of single
stars, and C(= 1.7) is a correction factor in order to set the unit of the binding
energy to be kTc(= 1.7kT ), which is one dimensional kinetic energy of single
stars in the core. The integral of the dimensionless rate Rbs over ∆ is described
in equation (49) of Heggie and Hut (1993), and obtained as a function of the
binding energy of the binary in the unit of kTc.

The dimensionless hardening rate g′(x) is expressed as

g′(x) = −1.66
( x

C

)−1

R′
bs(x/C), (3.12)

where R′
bs is the dimensionless rate of the interactions that the binary with the

binding energy x is destroyed in a sea of single stars. The dimensionless rate
R′

bs is described in equation (5.12) of Hut and Bahcall (1983), and also obtained
as a function of the binding energy of the binary in the unit of kTc.

The dimensionless hardening rate G(x1, x2) is expressed as

G(x1, x2) = 1.66
(

x1 + x2

C

)−1

Rbb(x1, x2)∆, (3.13)

where Rbb is the dimensionless rate of the interaction that the binary with
the binding energies x1 hardens to the binding energy (1 + ∆)(x1 + x2) in a
sea of binaries with the binding energy x2 when x1 > x2, and the binaries
with the binding energy x2 are destroyed. We consider only binary-binary in-
teraction which results in the destruction of the softer binary, since Mikkola
(1983a; 1983b; 1984a; 1984b) showed that the binary-binary interaction not
involving the destruction of one binary has small contribution to the heating
of the cluster. The dimensionless rate is averaged over ∆, since the number of
binary-binary scattering experiments is much smaller than that of binary-single
scattering experiments. The average of ∆ in binary-binary interactions is about
0.5 (Mikkola).

The dimensionless rate Rbb is expressed as

Rbb(x1, x2) =
√

2
3

1
πa2vs,c

∫
vσj(v)dv, (3.14)

where a is semi-major axis of the binary with the binding energy x1+x2, v is the
relative velocity between binaries, j(v) is the distribution of the relative velocity
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between the binaries, and σ is cross section of the binary-binary interactions.
Assuming that the velocity distribution of the single stars and binaries in the
core is isotropic Maxwellian, and equipartition is achieved: vb,c = (1/

√
2)vs,c,

where vb,c is one dimensional velocity dispersion of the binaries, the relative
velocity dispersion between the binaries

√
2vb,c is vs,c, and j(v) is expressed as

j(v) =
(

2
π

) 1
2 v2

v3
s,c

exp
(
− v2

2v2
s,c

)
. (3.15)

The cross section of the binary-binary interaction σ is expressed

σ = S
G2m3

v2Ebin,2
, (3.16)

where Ebin,2 is the binding energy of the softer binary, expressed as x2mv2
s,c/C,

and S is a dimensionless coefficient. The cross section σ is derived, based on
equation (2.7) in Gao et al. (1991). The dimensionless coefficient S depends on
the relation between the binding energies of the binaries, x1 and x2, as follows:

S =
{

25.2 (x1 ∼ x2)
15.9 (x1 À x2)

. (3.17)

In summary, the dimensionless rate Rbb is expressed as

Rbb(x1, x2) = 0.479S

(
x1 + x2

C

)(
(x1 + x2)2

x2

)
, (3.18)

and the dimensionless hardening rate G(x1, x2) is expressed as

G(x1, x2) = 0.398S
x1 + x2

x2
. (3.19)

I describe the forms of h(x) and H(x1, x2). When I obtain h(x), I assume
that at every binary-single encounter the binary increases its binding energy,
Ebin, by 0.4Ebin, and 2/3 of the increment goes to the kinetic energy of the
single star and the rest to the kinetic energy of the center of mass of the bi-
nary. The increment is the average value over all the binary-single encounters,
which has been obtained by Heggie (1975). The single star will be ejected when
Eb/m|Φc| > 15/4. The binary will be ejected when Eb/m|Φc| > 15. Since
the ejection results in the mass loss of the core, the binding energy of the core
decreases, i.e. the core is heated. The amount of the heating is m|Φc| when
a single star is ejected, and 2m|Φc| when a binary is ejected. Therefore, I can
express h(x) as

h(x) =


1, if x <

15
4

m|Φc|
kT

;
1
3

+
m|Φc|

¯∆Ebs
, if

15
4

m|Φc|
kT

< x < 15
m|Φc|
kT

;

3m|Φc|
¯∆Ebs

, if x > 15
m|Φc|
kT

.

(3.20)
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I set m|Φc| = 10kT as described in section 3.2. Then, h(x) is expressed as

h(x) =


1, if x < 38 ;
1
3

+
25
x

, if 38 < x < 150;
75
x

, if x > 150.

(3.21)

For H(x1, x2), I assume that at every binary-binary interaction, 0.5(Ebin,1 +
Ebin,2) is liberated, either binary is destroyed, and its 1/4 goes to the kinetic
energy of the center of mass of the surviving binary, and its 3/8 goes to each
single star which is a component of the destroyed binary. Then, H(x1, x2) is
expressed as

H(x1, x2) =


1, if (x1 + x2) <

16
3

m|Φc|
kT

;
1
4

+
2m|Φc|

¯∆Ebb
, if

16
3

m|Φc|
kT

< (x1 + x2) < 16
m|Φc|
kT

;

4m|Φc|
¯∆Ebb

, if (x1 + x2) > 16
m|Φc|
kT

,

(3.22)

and substituting m|Φc| = 10kT I finally obtain

H(x1, x2) =


1, if (x1 + x2) < 53 ;
1
4

+
40

x1 + x2
, if 53 < (x1 + x2) < 160;

80
(x1 + x2)

, if (x1 + x2) > 160.

(3.23)

In figure 3.11 and 3.12, solid curves show the dimensionless heating rate
of binary-single encounters in which the binaries survive (g(x)h(x)), and bina-
ries are destroyed (g′(x)) as a function of the dimensionless binding energy of
the binary, x, and those of binary-binary encounters (G(x1, x2)H(x1, x2)) as
a function of the dimensionless binding energy of the softer binary, x2, where
the binaries have the dimensionless binding energies x1 and x2, and x1 = x2,
x1 = 10x2, and x1 = 100x2. The solid curves except that of g′(x) have two
turnoff points. In more than x or x2 of the turnoff point with the smaller x
or x2, single stars which encounter with binaries, or was binary components
destroyed by binary-binary encounters are ejected from the clusters. In more
than x or x2 of the turnoff point with the larger x or x2, binaries involved with
binary-single and binary-binary encounters are ejected from the clusters.

From g(x)h(x) in figure 3.11, with the dimensionless binding energy x in-
creasing the dimensionless heating rate increases when x < 50kT , and decreases
when x > 50kT . From g′(x) in figure 3.11, binary-single encounters in which
the binaries are destroyed do not contribute to the dimensionless heating rate
of binary-single encounters when the dimensionless binding energy is more than
10kT .

From figure 3.12, we see that if the dimensionless binding energy of the
softer binary x2 is more than about 50kT , the dimensionless heating rate in
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x1 = x2 is larger than those in x1 = 10x2 and x1 = 100x2. This is due to the
dimensionless coefficient S in equation (3.16). The cross section of the binary-
binary interaction σ is large if x1 ∼ x2, and small if x1 À x2. Note that the
dimensionless heating rate of binary-binary encounters is not correct if x2 is soft,
i.e. x2 < 3kT . This is because the cross section of the binary-bury interaction
σ is applicable only when the two binaries are hard.

3.4.2 Instant of halt of core contraction

I compare the core sizes of the clusters in my simulations with the core sizes
derived from equation (3.7) in which the unit of the binding energies kT is
equal to kT0, and the distribution functions of the binding energies f(x) are δ
functions. The theoretical formula of the core sizes is expressed as

rc

rh
=

0.0196λ

log10(0.4N)

(
vs,c

vh

)3 ( γ

10

)
(2 − fb,c)4

×

{
2fb,c(1 − fb,c)

(2 − fb,c)2
[g(x)h(x) − g′(x)]

+
1
2

(
fb,c

2 − fb,c

)2

G(x1, x2)H(x1, x2)

}
. (3.24)

Figure 3.13 shows the distributions of the binding energies of binaries in the
whole clusters of models 10kT0−0.1, 30kT0−0.1, 100kT0−0.1, and 300kT0−0.1
at the time indicated in these panels, i.e. the time when the core contractions
stop. All the distributions of the binding energies have steep peaks at the
initial binding energies. Even inside the core radii, all the distributions of the
binding energies may do so. The distributions of the binding energies of binaries
in the core at the halt of the core contraction can be regarded as the initial
distributions, i.e. δ functions.

The average kinetic energies of single stars within the half-mass radii are
not different from the initial time to the halt of the core contraction (figure
3.8), which is confirmed by little changes of the half-mass radii during this time
(figure 3.2). Therefore, we can regard 1kT = 1kT0.

In figure 3.14, The big black dots show rc/rh at the halts of core collapse
of the clusters obtained in my simulations, as a function of the dimensionless
binding energy of the primordial binaries at the initial time. The numbers
beside the dots show the mass fraction of the binaries in the core at that time,
obtained from figure 3.7. The error bars indicate the amplitude of gravothermal
oscillations. The dots are the geometric means of the maximum and minimum
rc/rh in the gravothermal oscillations. Solid curves show equation (3.24) when
fb,c = 0.04, 0.1, 0.4, 1 as a function of the dimensionless binding energy x[kT0].
The numbers in italic format beside the curves show the mass fraction of the
binaries in the core, fb,c. Here, I adopt vs/vh =

√
2, and γ = 10. I adopt

λ = 0.45 so that the simulation results of model 30kT0−0.1 agree with fb,c = 0.5.
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In the binding energy with less than Ebin . Ekin,ave,s ∼ 2.5kT0, the curves are
not reliable, and should fall down to zero.

I compare the theoretical curves with the simulation results of models 10kT0−
0.1, 30kT0 − 0.1, 100kT0 − 0.1, and 300kT0 − 0.1. The ratios in my simulations
are in good agreement with the theoretical curves. The maximum difference is
a factor of two at x = 300. Since the amount of the energy released by the
binaries, and potential in the core are not accurate so much in this argument,
the difference is negligible.

The ratio in model 1kT0 − 0.1, and 3kT0 − 0.1 is much larger than the
theoretical curve of fb,c = 0.04. This is because the core collapse of the cluster
stop due to the energy that goes to the cluster from the three-body binaries
composed of the single mass stars. The three-body binaries appear after the
deep core collapse as discussed in section 3.1.

As is seen in figure 3.14, the theoretically estimated ratio, rc/rh, becomes
smaller and smaller with the binding energy of the primordial binaries, Ebin.
This is not in agreement with the minimum ratio of the core radius to the half-
mass radius in model Double, rc/rh = 0.005, if I consider model Double as the
hard limitation.

In model Double, three-body binaries composed of the double mass stars are
formed at the halt of core collapse as discussed in section 3.1. The thick curve
in model Double in figure 3.3 shows that the three-body binaries release energy.
The deep core collapse stops due to the energy from the three-body binaries to
the cluster.

If I consider model Double as the hard limitation again, the three-body bi-
naries composed of the double mass stars correspond to quadruples in which the
primordial binaries revolve around each other, and which are formed through
the encounters of the three primordial binaries. In the case of more than a crit-
ical binding energy, these quadruples should be formed, and release the energy
through the shrink of the orbits between the primordial binaries, which are the
components of these quadruples. Eventually, the core collapse stops.

I estimate the critical binding energy. The critical binding energy is that
of the point at which the theoretical curve of fb,c = 1.0 and the dashed line
in the lower right of figure 3.14, rc/rh = 0.005, cross. I adopt the theoretical
curve of fb,c = 1.0, since the mass fraction of the binaries in the core at the
halt of core collapse becomes larger with increasing the binding energy of the
binaries, and the mass fraction in model 300kT0 − 0.1 is 0.8, as seen in figure
3.7. I adopt rc/rh = 0.005 for the ratio in which the quadruples are formed,
since the three-body binaries are formed at rc/rh = 0.005 in model Double. The
critical value is Ebin ∼ 1000kT0. However, the critical value may be more than
that value. In hard limit, theoretical curves underestimates rc/rh, neglecting
the depth of the potential in the core when deep core collapse occurs.

3.4.3 After halt of core contraction

In models 10kT0 − 0.1, 30kT0 − 0.1, and 100kT0 − 0.1, I follow the evolution
after the halt of the core contractions during at least 1000 time unit. During
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this time, the ratio of the core radii to the half-mass radii grow smaller: the
core radii slightly grow smaller (models 10kT0 −0.1 and 30kT0 −0.1) and larger
(model 100kT0 − 0.1), and the half-mass radii grow larger. Considering the
time evolutions of the distributions of the binding energies and mass fractions
of the binaries, and the average kinetic energies of the single stars and binaries,
I compare the core sizes in the simulation results with the theoretical formula:
equation (3.7).

I estimate the average kinetic energy of the single stars and binaries as

1kT = 1kT0

(
rh,0

rh

)
, (3.25)

where rh,0 is the half-mass radius at the initial time, and rh,0 = 0.77 in Plum-
mer’s model. Equation (3.25) is derived from virial theorem 1kT ∝ rh

−1. Then,
the average kinetic energies of the single stars and binaries at the time when the
core contractions stop, and when the simulations are finished are 1kT = 0.80kT0

and 1kT = 0.52kT0 in 10kT0 − 0.1, 1kT = 0.87kT0 and 1kT = 0.53kT0 in
30kT0 − 0.1,and 1kT = 0.76kT0 and 1kT = 0.59kT0 in 100kT0 − 0.1.

Figure 3.15 shows the distributions of the binding energies of the binaries
scaled by the total number of binaries within the whole clusters (left panels),
the half-mass radii (middle panels), and twice the core radii (right panels) in
models 10kT0 − 0.1 (top panels) at the time when the simulations are finished.
30kT0−0.1 (middle panels), and 100kT0−0.1 (bottom panels). From figure 3.15,
we can see that the binaries with the initial binding energies do not exist within
twice the core radii in models 10kT0−0.1 and 30kT0−0.1 when the simulations
are finished. Assuming that the distributions of the binding energies within the
whole clusters, the half-mass radii, and twice the core radii are little different
at the halt of the core contractions, the distributions are greatly changed in
models 10kT0−0.1 and 30kT0−0.1 after the halts of the core contractions. The
assumption is good approximation, since the binaries with the initial binding
energies are dominant at the halt of the core contractions.

In figure 3.16, crosses show core radii at the time when the core contraction
stops, and when the simulations are finished, derived from the theoretical for-
mula, and dashed curves show the time evolution of the core radii. For the core
radii at the time when the core contraction stops, I use the distributions of the
binding energies of the binaries within the whole cluster (figure 3.5). For the
core radii at the time when the simulations are finished, I use the distributions
of the binding energies of the binaries within the whole cluster, the half-mass
radii, and twice the core radii from upper dots to bottom dots (figure 3.15).
For the dimensionless coefficient S related to the cross section of binary-binary
encounters, I use S = 25.2 if the binaries are in the same bin in figure 3.13 and
3.15, and S = 15.9 if the binaries are in different bins in figure 3.13 and 3.15.

From figure 3.16, the changes of the core radii in the simulation results
after the halt of the core contractions are in good agreement with those in
the theoretical estimates in models 10kT0 − 0.1, 30kT0 − 0.1, and 100kT0 −
0.1, particularly when I adopt the distributions of the binding energies within
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twice the core radii. In models 10kT0 − 0.1 and 30kT0 − 0.1, the core radii
slightly decrease after the halt of the core contraction both in the simulation and
theoretical estimates. In model 100kT0−0.1, the core radius is not changed after
the halt of the core contraction both in the simulation and theoretical estimates.
In model 100kT0−0.1, the core radius seems to increase after t = 2800. However,
the increase of the core radius may be fluctuation.

3.5 The initial mass fraction of the primordial
binaries

In this section, I discuss the dependence of the core evolution on the initial mass
fraction of the primordial binaries, fb,0. I first show the time evolution of the
core, rc, and half-mass radii, rh, and the mass fraction of the binaries inside
the core radii and half-mass radii, fb. I compare the ratio of the core radii to
the half-mass radii in my simulation results with the theoretical estimate of the
ratio with the respect of the mass fraction of the binaries in the core.

Figure 3.17 shows the time evolution of the core, rc, and half-mass radii,
rh, of the clusters with fb,0 = 0.03, 0.1, and 0.3 primordial binaries, each of
which has the binding energy Ebin,0 = 3kT0, 10kT0, and 300kT0. In models
3kT0 −0.03, and 3kT0 −0.1, deep core collapse occurs, and in model 3kT0 −0.3,
core collapse stops halfway. In the Ebin,0 = 30kT0, core collapse stops halfway.
In the Ebin,0 = 300kT0 models, deep core collapse occurs.

Figure 3.18 shows the time evolution of the mass fraction of the binaries
inside the core and half-mass radii, fb, of the clusters in the fb,0 = 0.03, 0.1,
and 0.3 models, each of which has the binding energy Ebin,0 = 3kT0, 10kT0,
and 300kT0. In all of them, mass segregation occurs initially. However, the
mass fraction of the binaries in the core decrease halfway in models 3kT0−0.03,
3kT0 − 0.1, 30kT0 − 0.03, and 300kT0 − 0.03. In models 30kT0 − 0.03, and
300kT0 − 0.03, the turning points correspond to the time when core collapse
stops. In contrast, in models 3kT0 − 0.03, and 3kT0 − 0.1, the mass fractions of
the binaries in the core decrease long before the core collapse.

In contrast to models 3kT0 − 0.03, and 3kT0 − 0.1, the core collapse of the
cluster in model 3kT0−0.3 stops halfway. Since the cluster has many primordial
binaries, the energy from the primordial binaries to the cluster is large enough
to stop the core collapse.

I compare the ratio of the core radii to the half-mass radii in my simulation
results with the theoretically estimated ratio in equation (3.7). The dots in
figure 3.19 show the mass fraction of the binaries in the core at the halt of core
collapse, fb,c, of the clusters whose primordial binaries have binding energy,
Ebin, at the initial time. The numbers beside the dots show the ratio of the
core radii to the half-mass radii at the halt of core collapse. When gravothermal
oscillations occur, the geometric means are shown. The triangles, circles, and
squares show the models fb,0 = 0.03, 0.1, and 0.3, respectively.

The curves in figure 3.19 show the ratio of the core radii to the half-mass
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radii, rc/rh, of clusters whose primordial binaries have binding energy, Ebin,
and whose mass fraction of the binaries in the core is fb,c at the halt of the core
collapse. The numbers in italic format beside the curves indicate the values of
rc/rh. If Ebin ≤ 2.5kT0, the curves are not reliable. This is the same reason as
in figure 3.14.

In the clusters above the curve of rc/rh = 0.002, the core collapse stops
halfway, and in the clusters below the curve of rc/rh = 0.002, the clusters
experience deep core collapse. In the models Ebin,0 = 3kT0, model 3kT0 − 0.03
and 3kT0−0.1 is below the curve, and model 3kT0−0.3 is above the curve. This
is in good agreement with my simulation results. The ratios rc/rh in models
1kT0 − 0.1, 3kT0 − 0.03, and 3kT0 − 0.1 disagree with theoretical curves, since
the core collapse stops due to energy heating core generated by the three-body
binaries. In the models Ebin,0 = 30kT0, the difference of rc/rh at the halts of
core collapse between models 30kT0 − 0.03 and 30kT0 − 0.1 is larger than that
between models 30kT0 − 0.1 and 30kT0 − 0.3. The dependence is reproduced
by the theoretical curves in figure 3.19. Furthermore, rc/rh is nearly the same
among the Ebin,0 = 300kT0 models in my simulations. This is also reproduced
by the theoretical curves. In the other models, the theoretical curves agree with
my simulation results.

3.6 Comparison with previous studies

McMillan et al. (1990) and Heggie and Aarseth (1992) showed only large core
radii at the halt of core contraction in clusters with primordial binaries whose
binding energies have wide distribution. In clusters with primordial binaries
whose binding energies have the distribution of δ function, I found that core
radii at the halt of core contraction depend on hardness of primordial binaries
in clusters: the core radii are small in soft and super hard ranges, and large in
intermediate hard range. The difference of the core radii results from that of
heating rate of each hardness of primordial binary. To show the difference of
the heating rate is owing to setting of distribution functions of binding energy
of the primordial binaries as δ functions.

My results suggest that the large core radii in McMillan et al. (1990) and
Heggie and Aarseth (1992) is only due to heating of 10 − 100kT0 primordial
binaries in their clusters which include primordial binaries from several kT0 to
several hundreds kT0 in my units. From the time evolution of the core radius
in the model fb,0 = 0.03 and Eb,0 = 30kT0 (the fourth left panel in figure 3.17),
we see that core contraction stop halfway in clusters with small population of
primordial binaries with intermediate hardness.

3.7 High-velocity escapers

I investigate escapers of each cluster in the fb,0 = 0.1 models. Figure 3.20 and
3.21 show the number distributions of the velocities of single escapers (Nesc,sin),
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and binary escapers (Nesc,bin) in the models fb,0 = 0.1. Both sizes of velocity
bin are 0.1 in log10 vsin and log10 vbin. Note that in model Double, the single and
binary escapers correspond to the escapers of the single and double mass stars,
respectively. Except model Double, two peaks are present, although the higher
peaks are small in models No-binary, 1kT0−0.1, and 3kT0−0.1. The population
of the lower velocity escapers is driven by two-body relaxation, and that of
the higher velocity escapers is ejected from the clusters through binary-single
and binary-binary encounters. In the binary escapers, the escape velocities are
similar to the higher population of the single escapers. They are also ejected
from the clusters through binary-single and binary-binary encounters.

Figure 3.22 shows the velocity of single escapers in the top and , top 99, 90,
and 50 % from top to bottom in as a function of the initial binding energy of
the primordial binaries in the models fb,0 = 0.1. Figure 3.23 shows those of the
binary escapers, although top 99 % is omitted because of the small number of
the binary escapers. The dashed lines in both figures show circular velocity of
the binary as a function of the initial binding energy, Ebin.

The gradients of single escapers in the top, and top 99, and 90 % of all single
escapers, and binary escapers in the top 90, and 50 % of all binary escapers are
nearly the same as the gradient of the internal velocity of the binaries between
models 100kT0 − 0.1 and 300kT0 − 0.1. This shows that almost binaries eject
single stars and themselves from the clusters at the first encounters.

Consider a globular cluster whose virial radius is 10 pc, and whose mass is
106 solar mass. Then, one velocity unit is 24 km/s. When I apply my simulation
results for the cluster, the highest velocity of the escapers is 500 km/s, which is
the single escaper in model 300kT0 − 0.1.

Figure 3.24 shows the number distribution, Nesc,bin of the binding energy of
binary escapers in the fb,0 models. The size of energy bin is 0.1 in log10 Ebin.
In models 1kT0−0.1, 3kT0−0.1, 10kT0−0.1, 30kT0−0.1, and 100kT0−0.1, the
binding energy distribution is largely changed from the initial conditions. On
the other hand, in models 300kT0−0.1, the peak is at the initial binding energy.
This shows that these primordial binaries are ejected from the clusters as soon
as they encounter with single stars and other binaries. Figure 3.25 shows the
binding energy of the binary escapers in the top, and top 90, and 50 % from top
to bottom as a function of the initial binding energies in the fb,0 = 0.1 clusters.

Additionally, I list the triple escapers in table 3.3. The second column is the
velocity of the center of mass of the triple escapers, vtri. The third and fourth
columns are, respectively, the binding energy (Ebin,in and Ebin,out) of the inner
and outer binaries in unit of kT0.
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Table 3.1: Initial models.

Model name Ebin,0 fb,0 Nb,0 fd,0 Nd,0

1kT0 − 0.1 1kT0 0.1 819 0 0
3kT0 − 0.1 3kT0 0.1 819 0 0
10kT0 − 0.1 10kT0 0.1 819 0 0
30kT0 − 0.1 30kT0 0.1 819 0 0
100kT0 − 0.1 100kT0 0.1 819 0 0
300kT0 − 0.1 300kT0 0.1 819 0 0
3kT0 − 0.03 3kT0 0.03 246 0 0
30kT0 − 0.03 30kT0 0.03 246 0 0
300kT0 − 0.03 300kT0 0.03 246 0 0

3kT0 − 0.3 3kT0 0.3 2458 0 0
30kT0 − 0.3 30kT0 0.3 2458 0 0
No-binary − 0 0 0 0
Double − 0 0 0.1 819

Table 3.2: Accuracy, and apocentric and pericentric parameters.

Model name η ηs α β
1kT0 − 0.1 0.01 0.0025 5 10
3kT0 − 0.1 0.01 0.0025 5 10
10kT0 − 0.1 0.01 0.0025 5 10
30kT0 − 0.1 0.01 0.0025 5 10
100kT0 − 0.1 0.01 0.0025 5 50
300kT0 − 0.1 0.01 0.0025 8 50
3kT0 − 0.03 0.01 0.0025 5 10
30kT0 − 0.03 0.01 0.0025 5 10
300kT0 − 0.03 0.01 0.0025 5 50

3kT0 − 0.3 0.01 0.0025 5 10
30kT0 − 0.3 0.01 0.0025 5 50
No-binary 0.01 0.0025 5 10
Double 0.01 0.0025 5 10

76



Table 3.3: The list of triple escapers.

Model name vtri[standard units] Ebin,in[kT0] Ebin,out[kT0]
30kT0 − 0.1 4.7 8.5 × 102 3.0 × 101

100kT0 − 0.1 0.44 2.8 × 102 9.2 × 100

1.2 5.7 × 102 7.4 × 100

0.39 4.7 × 102 2.6 × 100

1.7 6.2 × 102 1.5 × 100

300kT0 − 0.1 2.0 9.4 × 102 3.7 × 101
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Figure 3.1: Time evolution of energy errors in cluster models in table 3.1.78



Figure 3.2: Time evolution of the core radii, rc, and half-mass radii, rh, of the
clusters with fb,0 = 0.1 primordial binaries, and models No-binary and Double.
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Figure 3.3: The time evolution of the increase of the total binding energy of the
binaries, ∆Ebin,tot(t) (thick curves), which corresponds to energy generated by
the binaries, and the total energy of escapers, Eesc,tot(t), from the clusters (thin
curves), which corresponds to energy not heating the clusters despite that it is
generated by the binaries. The arrows indicate the times when the core collapse
stops.
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Figure 3.4: Time evolution of the number of binaries, Nb, in the fb,0 = 0.1
models, and models No-binary and Double. For model Double, the number of
the double mass stars is also plotted. The thick curves indicate the numbers of
binaries (or double mass stars) within the clusters, and the thin curves indicate
the total numbers of binaries, (or double mass stars) including escapers. The
arrows indicate the times when the core collapse stops.
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Figure 3.5: The number distribution, Nb, of the binding energy of the binaries,
Ebin, in unit of kT0.
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Figure 3.6: Binding energy and distance from cluster center of each binary at
the time indicated in the panels. The dashed lines show the half-mass radii and
twice the core radii at the time.

83



Figure 3.7: Time evolution of the mass fraction, fb, of the binaries inside the
core radii (the upper curves) and half-mass radii (the lower curves) in the fb,0

models, and model No-binary. For model Double, figure 3.7 shows the mass
fraction, fd, of the double mass stars are shown. The arrows show the time
when the core collapse stops.
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Figure 3.8: Time evolution of the mean kinetic energy of the single stars inside
the core radii (solid curves), and the half-mass radii (dashed curves) in the
fb,0 = 0.1 models, and models No-binary and Double. The arrows show the
time when the core collapse stops.
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Figure 3.9: Time evolution of the mean kinetic energy of the binaries, Ekin,ave,b,
inside the core radii in the fb,0 = 0.1 models. The arrows show the time when
the core collapse stops.
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Figure 3.10: Interpretation of core evolution.
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Figure 3.11: Dimensionless heating rate of binary-single encounters in which the
binaries survives (g(x)h(x)) and are destroyed (g′(x)) as a function of x, where
the binary have dimensionless binding energy x (solid curve). The dashed line
shows the dimensionless hardening rates of the binary with the binding energy
x in a sea of single stars, i.e. g(x).
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Figure 3.12: Dimensionless heating rate of binary-binary encounters,
G(x1, x2)H(x1, x2), as a function of x2, where the binaries have dimension-
less binding energy x1 and x2, and x1 = x2, x1 = 10x2, and x1 = 100x1 (solid
curves). The dashed lines show the dimensionless hardening rates of the binary
with the binding energy x1 in a sea of binaries with the binding energy x2, i.e.
G(x1, x2).
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Figure 3.13: Distributions of the binding energies of binaries in the whole clus-
ters at the time indicated in each panel, which is the time when the core con-
tractions stop.
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Figure 3.14: Ratio of core radii to half-mass radii at the halts of core collapse
of the clusters whose primordial binaries have equal binding energy, Ebin, and
whose cores contain the mass fraction of the primordial binaries in the core,
fb,c. The dots show the ratio of the core radii to the half-mass radii at the
halt of core collapse in my simulation. The numbers beside the dots are fb,c at
that time. The four curves draw equation (3.7) when fb,c = 0.04, 0.1, 0.4, and
1.0. The values of fb,c are beside the curves in italic format. The dashed lines,
rc/rh = 0.002, and 0.005, show the ratio of core radii to half-mass radii at the
halts of core collapse in model No-binary and Double, respectively.
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Figure 3.15: the distributions of the binding energies of the binaries scaled by
the total number of binaries within the whole clusters (left panels), the half-
mass radii (middle panels), and twice the core radii (right panels) in models
10kT0−0.1 (top panels) at the time when the simulations are finished. 30kT0−
0.1 (middle panels), and 100kT0 − 0.1 (bottom panels). The total numbers of
the binaries are indicated in these panels. The size of bins if 0.2 in log10 Ebin,
where the unit of Ebin is kT0. 92



Figure 3.16: Time evolution of core radii in my simulation (dashed curves), and
theoretical estimate (crosses). The time of theoretical estimate is the time when
the core contraction stops, and the time when the simulations are finished. I use
the distributions of the binding energies of binaries within the whole clusters,
half-mass radii, and twice the core radii for the three core radii at the time
when the simulations are finished, which are theoretically estimated, from top
to bottom. I use the distributions of the binding energies of binaries within the
whole clusters for the core radii at the time when the core contraction.
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Figure 3.17: Time evolution of the core, rc, and half-mass radii, rh, of the
clusters with fb,0 = 0.03, 0.1, and 0.3 primordial binaries, each of which has
the binding energy Ebin,0 = 3kT0, 10kT0, and 300kT0. The way of calculation
of the core radii is the same as that in figure 3.2.
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Figure 3.18: Time evolution of the mass fraction of the binaries inside the core
and half-mass radii of the clusters, fb, with fb,0 = 0.03, 0.1, and 0.3 primordial
binaries, each of which has the binding energy Ebin,0 = 3kT0, 10kT0, and 300kT0.
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Figure 3.19: Contours of the ratio of core radii to half-mass radii at the halt of
core contraction in clusters whose mass fraction of primordial binaries in the core
is fb,c, and distribution function of the primordial binaries is δ(x−Ebin), which
are obtained from equation (3.24). The numbers in italic show the ratio of the
core radii to the half-mass radii. The dashed curves are possibly not correct,
since the heating rate through binary-binary interactions in hard binaries is
extended to the soft range. The dots show simulation results. The vertical axis
shows fb,c at the halt of core contraction, the horizontal axis shows Ebin at
the initial time, and the numbers beside the dots is the ratio of core radii to
the half-mass radii at the halt of the core contraction. The shapes of the dots
show the initial mass fraction of the primordial binaries in the clusters, fb,0.
The triangles, circles, and squares show the models fb,0 = 0.03, 0.1, and 0.3,
respectively.
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Figure 3.20: The number distribution of the velocities of single escapers in the
models fb,0 = 0.1. The velocity is in N -body standard units. Bin sizes of the
velocity is 0.1 in logarithmic scale.

97



Figure 3.21: The number distribution of the velocities of binary escapers in the
models fb,0 = 0.1. The velocity is in N -body standard units. Bin sizes of the
velocity is 0.1 in logarithmic scale.
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Figure 3.22: The velocity of single escapers in the top, and the top 1, 10, and 50
% of all from top to bottom as a function of initial binding energy of primordial
binaries in the fb,0 = 0.1 clusters. The dashed line shows circular velocity of a
binary as a function of its binding energy.
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Figure 3.23: The velocity of binary escapers in the top, and the top 10, and 50
% of all from top to bottom as a function of initial binding energy of primordial
binaries in the fb,0 = 0.1 clusters. The dashed line shows circular velocity of a
binary as a function of its binding energy.
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Figure 3.24: The number distribution of the binding energy of binary escapers
in the models fb,0 = 0.1. The binding energy is in the unit of kT0. The bin size
of the binding energy is 0.1 in logarithmic scale.
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Figure 3.25: The binding energy of binary escapers in the top, and top 10, and 50
% of all from top to bottom as a function of initial binding energy of primordial
binaries in the fb,0 = 0.1 clusters. The units of vertical and horizontal axes are
kT0 in logarithmic scale.
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Chapter 4

Example of Application to
Astrophysics: Estimate of
Double Neutron Star
Merger Rate

4.1 Evolution of neutron stars in globular clus-
ters

Neutron stars are the most massive star in the globular clusters during last half
the lives of the globular clusters (∼ 5×109 years), since until first half their lives
elapse, stars with more than 1.4M¯ lose all or most of their initial masses due to
their stellar evolutions. There are only neutron stars and binaries whose total
masses are comparable to those of the neutron stars in the cluster cores due to
mass segregation. The binaries in the core become DNSs after several encounters
with single neutron stars. This is because more massive stars tend to be replaced
with less massive stars composing the binaries through these encounters. The
DNSs further encounter with single stars and other binaries, and grow harder
and harder. Eventually, the DNSs are ejected from the clusters as high-velocity
binary escapers through one encounter with a single star or another binary.

4.2 Previous works on DNS merger rate

Nowadays, we have to spend at least several years performing N -body simulation
of the dynamical evolution of clusters with N ∼ 106 during a Hubble time. We
can not estimate the merger rate of DNSs which are formed in one globular
cluster, directly from the results of the N -body simulations of the clusters.
We need some modellings of formations of DNSs in globular clusters. In what
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follows, I describe modellings which are constructed by previous works: Grindlay
et al. (2006) and Ivanova et al. (2008).

Grindlay et al. (2006) estimated the number of DNSs formed in one globular
cluster which undergoes core collapse once as

NDNS =
∫

ΓDNSdt, (4.1)

where ΓDNS is the formation rate of the DNSs. The formation rate of the DNSs,
ΓDNS, is expressed as

ΓDNS = nNSσDNSvcNpr, (4.2)

where nNS is the number density of neutron stars in the cluster core, σDNS is
cross section of a binary with one neutron star and one less massive star for
encounters that the less massive star is replaced with a single neutron star, vc

is velocity dispersion in the core, and Npr is the number of binaries including
one neutron star in the core. The Cross section, σNS, is derived from three-
body scattering experiments in which a binary with one neutron star and one
less massive star encounters with a single neutron star. From their experiments,
σDNS = 0.8AU2, and from observations, they set Npr = 20. Even if core collapse
proceeds, the velocity dispersion in the core, vc is not rarely changed. Therefore,
they set vc = 10km/s.

Toward the core collapse of the cluster, the number density, nNS, is dramat-
ically changed. They set the evolution of the number density nNS as∫ tcc

0

ndt ∼
∫ tcc

tcc−τ0

ndt ∼ 20nNS,0τ0, (4.3)

where tcc is the time of the core collapse, τ0 is the time remaining until core
collapse, and nNS,0 is the number density of neutron stars at the time τ0. They
set nNS,0 = 106pc−3 and τ0 ∼ 100Myr, which means that almost stars in the
core are neutron stars.

Ivanova et al.(2008) modelled clusters as those divided into two zones, core
and halo, whose number densities are fixed. These clusters contain ∼ 106 stars,
all of which belong to binaries. They adopted Kroupa (2002) as initial mass
function, and Belczynski et al. (2008) as stellar and binary evolution models.
They set probability that a star with mass m is in the cluster core after a time
t as

p(t) =
1
tsc

exp
(
− t

tsc

)
, (4.4)

where tsc is the characteristic mass segregation timescale, expressed as

tsc ∼ 10Csc

(
〈m〉h
m

)
trh. (4.5)

Here, 〈m〉h is the average stellar mass in the cluster halo, and they set Csc 〈m〉h =
3M¯. Whether each star and binary encounter with other single stars and bi-
naries is decided stochastically, obeying cross sections for single-single, binary-
single, and binary-binary encounters which are proportional to the sum of the
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stellar radii, the apocenter separation of the binary and the stellar radius, and
the apocenter separations of the binaries, respectively. If a star or binary en-
counter with other objects, two-body, three-body, or four-body scattering ex-
periments are performed. They investigated 70 cluster models among which the
number density of stars in the core ranges from 103pc−3 to 106pc−3, half-mass
relaxation time ranges from 1Gyr to 3Gyr, and so on. In these 70 cluster models,
only 14 DNSs are formed.

4.3 Our model for DNS evolution

In order to estimate the DNS merger rate from my simulation results, I have to
decide which stars in my cluster models are neutron stars, considering theoreti-
cally the motions of the neutron stars in real globular clusters. This is because
all the stars in my cluster models have equal mass, we can not distinguish which
stars are neutron stars and other stars without any theoretical consideration.

I model that all the high-velocity single and binary escapers consist of neu-
tron stars unless all the neutron stars in the clusters are completely depleted.
This modelling is based on the assumption that all binaries hard enough to eject
themselves and single stars through binary-single and binary-binary encoun-
ters consist of neutron stars, since hard binaries experience several encounters
through which they are hardened.

Then, DNS merger rate per a globular cluster, NDNS, is estimated results as
follows:

NDNS =

{
fgwCNnhv,bTsim (CN(nhv,s + 2nhv,b)Tsim < NNS)
fgwNNS

nhv,b

nhv,s + 2nhv,b
(CN(nhv,s + 2nhv,b)Tsim > NNS) , (4.6)

where nhv,s and nhv, are, respectively, the number of high-velocity single and
binary escapers per initial half-mass relaxation time in my cluster models, Tsim

is the simulation time in the unit of initial half-mass relaxation time in my
cluster models, fgw is a fraction of DNSs merging within a Hubble time in the
total DNSs, CN is N -scaling factor which is required for scaling the number of
stars in my cluster models to that in real globular clusters, and NNS is the total
number of neutron stars in real globular clusters. If neutron stars are completely
depleted, the lower expression in the right-hand side of equation (4.6) is applied
for NDNS, and if not, the upper expression is done so.

Note that these high-velocity single escapers may include other than neu-
tron stars. The binaries which are involved by binary-single and binary-binary
encounters resulting in high-velocity single escapers may not be the DNSs. The
binaries do not experience several encounters before the encounter resulting in
the high-velocity single escapers, since single stars are ejected through softer
binary interactions than the binaries themselves are ejected. I overestimate the
depletion of neutron stars due to high-velocity single escapers. Therefore, I un-
derestimate NDNS when I adopt the lower expression in the right-hand side of
equation (4.6).
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I derive N -scaling factor CN, which is expressed as

CN =
Nhv(N)

Nhv(16384)
=

N

16384
, (4.7)

where Nhv(N) is the total number of high-velocity single and binary escapers
at each half-mass relaxation time in a cluster with the number of stars, N .
The reason for the second equality in equation (4.7) is as follows. The number
of high-velocity escapers is proportional to the number of binary-single and
binary-binary encounters. Energy generated from these binaries through such
encounters is balanced with energy outflow from inside of half-mass radius to
outside of half-mass radius, if the core contraction stops. The energy outflow
does not depend on N . On the other hand, the energy generated through
each encounter is inversely proportional to N . Therefore, the number of such
encounters is proportional to N .

I express the number of neutron stars in the globular clusters NNS as follows:

NNS = 1000
(

N

106

)
, (4.8)

which is consistent with observations of pulsars, and X-ray sources in massive
globular clusters (e.g. 47 Tuc; Terzan 5). The retention factor of the neutron
stars in the globular clusters is about 10 %, since 8−93 neutron stars are formed
in the globular cluster if we adopt Miller and Scalo (1979) or Kroupa (2001)
whose upper limit of stellar mass is 15M¯ and lower limit is 0.1M¯ as the initial
mass function of the globular cluster.

4.4 Results

In the first and second columns of table 4.1, I summarize the number of high-
velocity single escapers nhv,s and binary escapers nhv,b per initial half-mass
relaxation time in my cluster models, which are obtained from figure 3.20 and
figure 3.21. The initial half-mass relaxation time in my cluster models is 200 in
N -body time unit, and I assume that escape velocities of th high-velocity single
escapers are more than 1 in N -body unit, and all binary escapers have high
velocity. In the third column of table 4.1, I describe Tsim.

Using the distribution of the binding energies of the ejected binaries (figure
3.24), I estimate the fraction of the DNSs which merge within a Hubble time
in the total DNSs, fgw. The time until the DNSs merge through gravitational
wave radiation is expressed as

tgw = 1 × 1018

(
mDNS

1M¯

)−3 ( a

1AU

)4

g(e)years, (4.9)

where mDNS is the total mass of the DNS, typically 2.8M¯, a is the semi-major
axis of the DNS, e is the eccentricity of the DNS, and g(e) is expressed as

g(e) =
(1 − e2)7/2

1 + (73/24)e2 + (37/96)e4
. (4.10)
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When a is less than 0.02AU, tgw is less than a Hubble time, ∼ 1010 years, even
if e = 0. On the other hand, the semi-major axis is expressed as

a = 2 × 10−2

(
rv

3pc

) ( x

100kT

)−1
(

N

106

)
AU, (4.11)

where rv is the virial radius of the cluster, and x is the binding energy of the
binary in the unit of kT . Therefore, when the cluster has 3pc virial radius,
and N = 106, which is typical globular cluster, DNSs with more than 100kT
merge within a Hubble time. Since from figure 3.24 the binding energies of most
ejected binaries are more than 100kT , fgw = 1 in all my cluster models as seen
in the fourth column of table 4.1.

In the fifth column of table 4.1, I describe the number of the DNSs which
merge within a Hubble time in my cluster models when I scale my cluster models
to those with 3pc virial radii and N = 106. Since in all my cluster models,
neutron stars are completely depleted, I apply the lower expression of equation
(4.6) for DNS merger rate per a globular cluster, NDNS. From table 4.1, the
DNSs which merge within a Hubble time are 140−280 per one globular cluster,
and have little dependence on the distributions of the binding energies of the
primordial binaries. The DNSs which merge within a Hubble time depend on
the number of the neutron stars retained by the globular clusters.

Since about 150 globular clusters are in our Galaxy, about 3 × 104 DNSs
which merge within a Hubble time are in our Galaxy. This DNS merger rate in
our Galaxy is comparable to Kim et al. (2005)’s estimate from observed DNSs
that the DNS merger rate is about 15 per 106 years. The DNS merger rate in
our Galaxy constrained by the observations can be almost explained only by the
dynamical formation of the DNSs in the galactic globular clusters without any
binary evolution of progenitors of the neutron stars, such as tidal interactions,
mass transfer, and common envelop evolution (e.g. Belczynski et al. 2007).

4.5 Comparison with previous works

The DNS merger rate per a globular cluster in my estimate is larger than Grind-
lay et al. (2006)’s, and Ivanova et al. (2008)’s estimates by two and three
order and of magnitudes, respectively. The discrepancy between Grindlay et
al. (2006)’s and our results arises from the number of progenitors of DNSs.
They assumed that the progenitors are only binaries consisting of one neutron
star and one other star, not binaries consisting of other than neutron stars.
Furthermore, the binaries with one neutron star are typically 20 in each mas-
sive globular cluster. The numbers of the progenitors in each massive globular
cluster seems lower limits.

The discrepancy between Ivanova et al. (2008)’s and our results comes from
the modellings of mass segregation. In the modelling of mass segregation of
Ivanova et al. (2008), mass segregation weakens. The neutron stars are not
concentrated in the cluster core. The encounters involving neutron stars become
small. Therefore, the number of DNSs formed in the clusters is small.
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Table 4.1: The number of high-velocity single and binary escapers at each initial
half-mass relaxation time, nhv,s and nhv,b, the simulation time in the unit of the
initial half-mass relaxation time, Tsim, a fraction of double neutron stars (DNS)
which merge within a Hubble time in total DNS, and the number of DNS which
merge within a Hubble time in one typical globular cluster.

Model name nhv,s Nhv,b Tsim fgw NDNS

No-binary 4.9 1.0 25 1 140
1kT0 − 0.1 5.7 1.4 25 1 160
3kT0 − 0.1 8.9 2.1 28 1 160
10kT0 − 0.1 9.3 2.2 23 1 160
30kT0 − 0.1 15 3.7 19 1 170
100kT0 − 0.1 18 9.6 15 1 260
300kT0 − 0.1 17 11 12 1 280
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Chapter 5

Summary

I develop a new N -body simulation code equipped with special treatments for
binaries, whose name is GORILLA. By means of GORILLA, we can follow the
evolution of clusters within the energy error ∼ 1 % during few relaxation time
after gravothermal core collapse. The structural parameter of the clusters (for
example Lagrange radii) are not affected very much by the energy error up to
10 %. My results by means of GORILLA agrees with Anders et al. (2007), who
have performed the same simulations as mine by means of NBODY4 and kira.

I study systematically the dependence of cluster evolution on the binding
energy of primordial binaries. By means of GORILLA, I simulate the core
evolution of the clusters, each of which contains primordial binaries with equal
binding energy.

I find that in both soft (models 1kT0−0.1, and 3kT0−0.1) and hard (300kT0−
0.1) hardness, the clusters experiences deep core collapse. In models 1kT0−0.1,
and 3kT0 − 0.1, the ratios of the core radii to the half-mass radii are 0.002 at
the halt of core collapse, and in model 300kT0 − 0.1 the ratios are 0.02. On the
other hand, in models 10kT0 − 0.1, 30kT0 − 0.1, and 100kT0 − 0.1, core collapse
stops halfway, and the ratios of the core radii to the half-mass radii are 0.05−0.1
at that time. The depth of the core collapse depends on the amount of energy
heating core generated by the primordial binaries.

The amount of the energy heating the core depends on whether the binaries
can become harder or not through binary-single and binary-binary encounters,
and whether the single stars and binaries heated by such encounters are ejected
or not from the clusters. In model 1kT0 − 0.1, the primordial binaries are
destroyed through encounters, and can not heat the core. In model 3kT0 − 0.1,
the primordial binaries heat the core, but it makes the time to the core collapse
longer, compared to the case without primordial binaries, since that heating
is not so large to stop core collapse. In models 10kT0 − 0.1, 30kT0 − 0.1, and
100kT0 − 0.1, the primordial binaries continually heat the core, and becomes
harder and harder. In model 300kT0 − 0.1, the kinetic energy transformed from
binding energy of primordial binaries through encounters is so large to be ejected
from whole cluster immediately, and the primordial binaries can not heat the
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core.
I theoretically estimate the ratio of core radius to half-mass radius at the

halt of core collapse. I compare the theoretical estimate with my simulation
results. In models 10kT0 − 0.1, 30kT0 − 0.1, 100kT0 − 0.1, and 300kT0 − 0.1,
my simulation results are in good agreement with the theoretical estimates. In
models 1kT0 − 0.1, and 3kT0 − 0.1, the ratios are much larger than those of
theoretical estimates, since the core collapse stops due to energy heating core
generated by the three-body binaries in these models.

After the halt of the core contraction, the core radii slightly decrease in
models 10kT0 − 0.1 and 30kT0 − 0.1, and is not changed in model 100kT0 − 0.1,
while the half-mass radii in these models are expanding. The decrease of the
ratio of the core radii to the half-mass radii is due to the overall hardening of
the binaries which comes from the decrease of the average stellar kinetic energy.
The slight decrease of the core radii in models 10kT0 − 0.1 and 30kT0 − 0.1 is
due to the hardening of the binaries through binary-single and binary-binary
encounters.

I also investigate the dependence of cluster evolution on the initial mass
fraction of the primordial binaries, fb,0. I find that core collapse stops halfway
in model 3kT0 − 0.3, in contrast to model 3kT0 − 0.1. This is because more
primordial binaries in model 3kT0 − 0.3 becomes harder than those in model
3kT0−0.1. The ratios of the core radii to the half-mass radii in models 30kT0−
0.1 (0.09), and 30kT0−0.1 (0.1) are two times larger than that in models 30kT0−
0.03 (0.05). The ratios in the Ebin,0 = 300kT0 are similar, and 0.02−0.03. These
ratios are in good agreement with the theoretical estimates.

From the high-velocity single and binary escapers in my simulations, I es-
timate the merger rate of double neutron stars (DNSs) which are formed in
one globular clusters. The number of the DNSs which merge within a Hubble
time are about 200, which does not depend on the initial distributions of the
binding energies of the primordial binaries. Since 150 globular clusters are in
our Galaxy, about 3 × 104 DNSs merge within a Hubble time in our Galaxy,
which is comparable to Kim et al. (2005)’s estimates from the observations of
the DNSs. The DNS merger rate in our Galaxy constrained by the observations
is almost explained only by the dynamical formation of the DNSs in the galactic
globular clusters without any binary evolution, such as tidal interactions, mass
transfer, and common envelop evolution (e.g. Belczynski et al. 2007).
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Appendix A

Algorithm of GORILLA

I describe step-by-step the algorithm of the time integrator part in section A.1,
and that of GORIMO in section A.2.

A.1 Time integrator part

For the time integrator part, I adopt the fourth-order Hermite integrator with
individual timestep scheme (Makino, Aarseth 1992), and block timestep scheme
(McMillan 1986). Indexes are attached to all the particles. In the time integrator
part, particle i has its own time, ti, its timestep, ∆ti, mass, mi, position, ri,
and, velocity, vi, at time ti, and acceleration, ai, and first-order time derivative
of acceleration, ji (= dai/dt), calculated at time ti. Since I adopt the block
timestep scheme, ∆ti = ∆tmax/2q−1, where ∆tmax is the maximum timestep,
and q is a positive integer.

In this part, particles not in isolation, the centers of mass of binaries which
are in isolation but do not belong to any hierarchical triple system in isolation,
and the centers of mass of hierarchical triple systems in isolation are integrated.
As far as in this subsection, such particles and centers of mass are collectively
called particles, and the list of these particles is called integration list.

In the time integrator part, the orbital motions of particles in the integration
list are solved as follows.

Step 1 Search the integration list for the particles with a minimum ti + ∆ti.
Set the global time, t, to be this minimum, ti +∆ti. I put together all the
particles with ti + ∆ti equal to t, and call them particles i.

Step 2 Predict the positions, rp,j , and the velocities, vp,j , of all the particles
in the integration list at time t using rj , vj , aj , and jj . The formulas are
as follows:

rp,j =
(t − tj)3

6
jj +

(t − tj)2

2
aj + (t − tj)vj + rj (A.1)
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and

vp,j =
(t − tj)2

2
jj + (t − tj)aj + vj , (A.2)

where j runs through all particles in the integration list.

Step 3 Calculate the acceleration, ai, and its time derivative, ji, for particles
i at time t, using the predicted positions and velocities, as follows:

ai = −
∑

j

Gmj
rij

|rij |3
(A.3)

and

ji = −
∑

j

Gmj

[
vij

|rij |3
+

3(vij · rij)rij

|rij |5

]
, (A.4)

where
rij = rp,i − rp,j , (A.5)

vij = vp,i − vp,j . (A.6)

Step 4 Calculate second-order time derivative, si (= d2ai/dt2), and third-order
time derivative, ci (= d3ai/dt3), of the acceleration, ai, using a Hermite
interpolation as follows:

s0,i =
−6(a0,i − a1,i) − ∆ti(4j0,i + 2j1,i)

∆t2i
, (A.7)

and

c0,i =
12(a0,i − a1,i) + 6∆ti(j0,i + j1,i)

∆t3i
, (A.8)

where the subscripts indicate the time at which the accelerations and the
derivatives are evaluated. If they are ‘0‘, the time is ti, and if they are
‘1‘, the time is ti + ∆ti, i.e. the global time, t. Add the corrections to the
positions and velocities of particles i as follows:

ri(ti + ∆ti) = rp,i +
∆t4i
24

s0,i +
∆t5i
120

c0,i, (A.9)

and

vi(ti + ∆ti) = vp,i +
∆t3i
6

s0,i +
∆t4i
24

c0,i. (A.10)

Step 5 Update ti, and calculate the new timestep, ∆t1,i, given by

∆t1,i =

 2∆t0,i (∆tcrit ≥ 2∆t0,i; ti/(2∆t0,i): integer)
∆t0,i (∆tcrit ≥ 2∆t0,i; ti/(2∆t0,i): not integer)
∆tmax/2q−1 (∆tcrit < 2∆t0,i)

(A.11)
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where ∆t0,i is the old timestep, q is a positive integer satisfying ∆tcrit/2 <
∆tmax/2q−1 ≤ ∆tcrit, and ∆tcrit is given by

∆tcrit =

√
η
|a1,i||s1,i| + |j1,i|2
|j1,i||c1,i| + |s1,i|2

, (A.12)

where η is accuracy parameter, s1,i = s0,i + ∆t0,ic0,i, and c1,i = c0,i.

Step 6 Send the global time, t, and all the particle data to GORIMO.

Step 7 Receive data from GORIMO.

Step 8 Go to step 1.

A.2 GORIMO

In this subsection, I describe the procedures of the special treatments for bina-
ries, which proceed in GORIMO. The tasks of GORIMO are divided into three.
First is to change two particles into those in isolation, second is the inversion of
the first special treatment, and third is to send the information on the outcome
of the first and second special treatments to the time integrator part, whose
procedures are described in step 6-1, 6-2, and 6-3, respectively.

Step 6-1

Step 6-1.1 Search the integration list for pairs of two particles (or the
center of mass of two particles in isolation and one particles) isolated
enough, and with the times equal to the global time, t. If such pairs
exist, I proceed to step 6-1.2, otherwise to step 6-2. Such pairs satisfy
either isolation conditions as follows, and hereafter the indexes of the
two particles (or the center of mass of two particles in isolation and
one particles) in such pairs are set to be k and l.

Isolation conditions (A)
1. Ebin,kl > 1kT0

2. |r3 − rcm,kl| > αrapo,kl

3. rperi,kl > α max(sk, sl)
Isolation conditions (B) (only for pairs of two particles)

1. Do not satisfy isolation conditions (A), and Ebin,kl > 0
2. ekl > 0.95
3. |r3 − rcm,kl| > βrrel,kl

4. rrel,kl · vrel,kl ≤ 0
Isolation conditions (C) (only for pairs of two particles)

1. Ebin,kl ≤ 0
2. ∆tk ≤ ∆tmax/236 and ∆tl ≤ ∆tmax/236
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3. |r3 − rcm,kl| > βrrel,kl

4. rrel,kl · vrel,kl ≤ 0

Here, Ebin,kl is the binding energy of particles k and l, expressed as

Ebin,kl = −
(

1
2

mkml

mk + ml
|vrel,kl|2 −

Gmkml

|rrel,kl|

)
, (A.13)

where vrel,kl = vk−vl. Here, r3 is the position of the nearest particle
(or center of mass of two particles and hierarchical triple systems in
isolation) from the center of mass of particles k and l, rcm,kl. The
separations between particles k and l at the apocenter, rapo,kl, and
pericenter, rperi,kl, are, respectively, expressed as

rapo,kl = akl(1 + ekl), (A.14)

and
rperi,kl = akl(1 − ekl), (A.15)

where akl is the semi-major axis of particles k and l, expressed as

akl =
Gmkml

2|Ebin,kl|
, (A.16)

and ekl is the eccentricity of particles k and l, expressed as

ekl =

√
1 − Ebin,kl|rrel,kl × vrel,kl|

G2mkml(mk + ml)
. (A.17)

Here, si (i = k, l) is the size of particle (or center of mass of two
particles and hierarchical triple system) i. Particle i has si = 0, and
the center of mass of two particles in isolation has si equal to the
separation at the apocenter between the two particles. Through di-
mensionless quantities α (called apocentric parameter) and β (called
pericentric parameter), I decide the strictness of isolation. I discuss
appropriate apocentric and pericentric parameters in subsection 2.2.

Step 6-1.2 Calculate the data of the center of mass of all the pairs sat-
isfying either isolation conditions, which are required for the time
integrator part. The data of each center of mass are the time, tcm,kl,
timestep, ∆tcm,kl, mass, mcm,kl, position, rcm,kl, velocity, vcm,kl, ac-
celeration, acm,kl, and first-order time derivative of the acceleration,
jcm,kl. The time, tcm,kl, mass, mcm,kl, and velocity, vcm,kl, are, re-
spectively, expressed as

tcm,kl = t, (A.18)

mcm,kl = mk + ml, (A.19)

and
vcm,kl =

mkvk + mlvl

mk + ml
. (A.20)
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The position, rcm,kl, is calculated as equation (2.2). The acceleration,
acm,kl, and the first-order time derivative of the acceleration, jcm,kl,
are calculated in the same way as ai and ji in step 3. The timestep,
∆tcm,kl, is expressed as

∆tcm,kl =
{

min(∆tk,∆tl) (∆tcrit,s ≥ min(∆tk, ∆tl))
∆tmax/2q−1 (∆tcrit,s < min(∆tk, ∆tl))

, (A.21)

where q is a positive integer satisfying ∆tcrit,s/2 < ∆tmax/2q−1 ≤
∆tcrit,s, and ∆tcrit,s is given by

∆tcrit,s = ηs
|acm,kl|
|jcm,kl|

. (A.22)

Here, ηs is start-up accuracy parameter.

Step 6-1.3 Keep the data of the particles in all the pairs in GORIMO.
The data of the particles in each pair are as follows.

• The time of particles k and l (tk and tl).
• The mass of particles k and l (mk and ml).
• The relative position, rrel,kl, and the relative velocity, vrel,kl of

particles k and l at the current time, t.
• The name of the isolation conditions satisfied by particles k and

l.

Step 6-2

Step 6-2.1 List the centers of mass of two particles and hierarchical triple
systems in isolation with the times equal to the global time, t, and op-
erate each center of mass according to the following steps. Hereafter,
the indexes of particles of which each center of mass is composed are
k and l.

Step 6-2.2 Calculate the relative position, rrel,kl, and the relative ve-
locity, vrel,kl, of particles k and l at the current time, t, by solving
equation (2.7) as follows.

Step 6-2.2.1 Calculate the eccentric anomaly, ukl, of particles k and
l at the current time t, solving Kepler equation expressed as

ukl − ekl sin ukl =

√
G(mk + ml)

a3
kl

(t − tperi,kl) (Ebin,kl > 0)

ekl sinhukl − ukl =

√
G(mk + ml)

a3
kl

(t − tperi,kl) (Ebin,kl < 0)

,

(A.23)
where akl is the semi-major axis, ekl is the eccentricity, and
tperi,kl is the nearest time at the passage of the pericenter from
the time t0 when particles k and l have been in isolation. I obtain
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akl, and ekl, using the relative position, rrel,0,kl and the relative
velocity vrel,0,kl between particles k and l at the time t0 accord-
ing to equation (A.16) and (A.17). I obtain tperi,kl, according to
the following expression:

tperi,kl =



t0 −

√
a3

kl

G(mk + ml)
(u0,kl − ekl sin u0,kl)

(Ebin,kl > 0)

t0 −

√
a3

kl

G(mk + ml)
(ekl sinhu0,kl − u0,kl)

(Ebin,kl < 0)

,

(A.24)
where u0,kl is the eccentric anomaly at the time t0, given by

u0,kl =



arccos [(1 − |rrel,0,kl|/akl)/ekl]
(Ebin,kl > 0, rrel,0,kl · vrel,0,kl > 0)

− arccos [(1 − |rrel,0,kl|/akl)/ekl]
(Ebin,kl > 0, rrel,0,kl · vrel,0,kl < 0)

cosh−1 [(1 − |rrel,0,kl|/akl)/ekl]
(Ebin,kl < 0)

. (A.25)

The solution methods of the Kepler equation are an iterative
method of Kepler equation (e.g. Murray, Dermott 1999) when
Ebin,kl > 0, and Newton’s method when Ebin,kl < 0. I stop
the iteration if |Xn − Xn−1| < 10−6[rad], and decide Xn as the
solution, where Xn is n-th order approximation of the solution.

Step 6-2.2.2 Calculate the relative position, r∗rel,kl = (x∗
kl, y

∗
kl), and

the relative velocity, v∗
rel,kl = (v∗

x,kl, v
∗
y,kl), between particles k

and l at the current time t, where figure A.1 shows the coordinate
system of (x∗, y∗). They are given by

x∗
kl =

{
akl(cos ukl − ekl) (Ebin,kl > 0)
−akl(cosh ukl − ekl) (Ebin,kl < 0) , (A.26)

y∗
kl =

{
akl

√
1 − e2

kl sinukl (Ebin,kl > 0)
akl

√
e2
kl − 1 sinhukl (Ebin,kl < 0)

, (A.27)

v∗
x,kl =


− sinukl

1 − ekl cos ukl

√
G(mk + ml)

akl
(Ebin,kl > 0)

sinhukl

√
Gakl(mk + ml)

x∗
kl

2 + y∗
kl

2 (Ebin,kl < 0)

,

(A.28)
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and

v∗
y,kl =


cos ukl

1 − ekl cos ukl

√
G(mk + mk)(1 − ekl2)

akl
(Ebin,kl > 0)

cosh ukl

√
Gakl(mkl + ml)(e2

kl − 1)
x∗

kl
2 + y∗

kl
2 (Ebin,kl < 0)

.

(A.29)
Step 6-2.2.3 Rotate the coordinate of the relative position and ve-

locity of particle k and l from r∗rel,kl and v∗
rel,kl to rrel,kl and

vrel,kl as follows:

rrel,kl = Rz(−Ωkl)Rx(−Ikl)Rz(−ωkl)r∗rel,kl (A.30)

and

vrel,kl = Rz(−Ωkl)Rx(−Ikl)Rz(−ωkl)v∗
rel,kl, (A.31)

where Rx(θ) and Rz(θ) are, respectively, the matrices rotating
vectors by θ around x and z axes expressed as

Rx(θ) =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 , (A.32)

and

Rz(θ) =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1

 . (A.33)

Here, Ikl, Ωkl, and ωkl are the inclination, longitude of the ascend-
ing node, and argument of the pericenter with respect to the cluster,
shown in figure A.2. They are conservative quantities, and obtained
using rrel,0,kl = (x0, y0, z0) and vrel,0,kl = (vx,0, vy,0, vz,0). The incli-
nation, Ikl, is expressed as

Ikl = arccos
(

hz,kl

|hkl|

)
, (A.34)

where hkl = (hx,kl, hy,kl, hz,kl) is the angular momentum of particles
k and l, given by

hkl = rrel,0,kl × vrel,0,kl. (A.35)

The longitude of the ascending node, Ωkl, is expressed as

Ωkl =
{

arccos [−hy,kl/(|hkl| sin Ikl)] [hx,kl/(|hkl| sin Ikl) > 0]
− arccos [−hy,kl/(|hkl| sin Ikl)] [hx,kl/(|hkl| sin Ikl) < 0] .

(A.36)
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The argument of the pericenter, ωkl, is expressed as

ωkl =



arccos
{

[|hkl|/G(mk + ml)] v̄y,0 − x̄0/|rrel,0,kl|
ekl

}
(

[|hkl|/G(mk + ml)] v̄x,0 + ȳ0/|rrel,0,kl|
ekl

< 0
)

− arccos
{

[|hkl|/G(mk + ml)] v̄y,0 − x̄0/|rrel,0,kl|
ekl

}
(

[|hkl|/G(mk + ml)] v̄x,0 + ȳ0/|rrel,0,kl|
ekl

> 0
)

,

(A.37)
where (x̄0, ȳ0) and (v̄x,0, v̄y,0) are the relative position and velocity
between particle k and l in the coordinate system on the orbital
plane in which x̄ axis is oriented in the direction from particle l to
the ascending node, shown in figure A.2, and ȳ axis is perpendicular
to x̄ axis. Here, x̄0, ȳ0, v̄x,0, and v̄y,0 are given by

x̄0 = x0 cosΩkl + y0 sinΩkl, (A.38)

ȳ0 = (−x0 cosΩkl + y0 cosΩkl) cos Ikl + z0 sin Ikl, (A.39)

v̄x,0 = vx,0 cos Ωkl + vy,0Ωkl, (A.40)

and

v̄y,0 = (−vx,0 sinΩkl + vy,0 cosΩkl) cos Ikl + vz,0 sin Ikl. (A.41)

Step 6-2.3 Transform rcm,kl and rrel,kl to rk and rl as follows:

rk = rcm,kl +
ml

mk + ml
rrel,kl, (A.42)

and
rl = rcm,kl −

mk

mk + ml
rrel,kl, (A.43)

and vcm,kl and vrel,kl to vk and vl as follows:

vk = vcm,kl +
ml

mk + ml
vrel,kl, (A.44)

and
vl = vcm,kl −

mk

mk + ml
vrel,kl, (A.45)

where rcm,kl and vcm,kl are sent from the time integrator part.

Step 6-2.4 Judge whether particles k and l satisfy the isolation condi-
tions satisfied by them at the time t0. If they satisfy the isolation
conditions, I proceed to step 6-3, otherwise to step 6-2.4.
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Step 6-2.5 Calculate the data of particle k and l. The data are the times
(tk and tl), the timesteps (∆tk and ∆tl), acceleration (ak and al),
and first-order time derivative of the acceleration (jk and jl), which
I obtain in the same way as those of the center of mass of particles k
and l in step 6-1.1.

Step 6-3 Send the data of the particles and centers of mass in the integration
list to the time integrator part.

F’ F

x*

y*

ukl particle l

particle k

Figure A.1: The orbital plane of the relative motion between particles k and l.
The elliptic curve shows the relative orbit of particle k with respect to particle
l. Coordinate system of (x∗, y∗) is set, such that the origin is put on the middle
point between two focus (F, and F’) of the orbital ellipse, the two focus are
on x∗ axis which is oriented the pericenter of the orbit of particle k, and y∗ is
oriented in the direction of the velocity of particle k at the pericenter. The angle
between x∗ axis and the line from the origin to particle k is eccentric anomaly,
ukl.
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x

y

z

x

x*

Ikl

particle l

particle k

�

kl

�
kl

ascending node

pericenter

Figure A.2: The relative motion of particle k with respect to particle l in co-
ordinate system (x, y, z) whose origin is put on particle l. The angle between
x − y plane and the orbital plane is called inclination, denoted by Ikl. Two
coordinate systems (x̄, ȳ) and (x∗, y∗) are set on the orbital plane. The x̄ axis
is oriented from the origin in the direction of the ascending node of particle
k. The angle between the x and x̄ axes is called longitude of ascending node,
denoted by Ωkl. The x∗ axis is oriented from the origin in the direction of the
pericenter of particle k. The angle between the x̄ and x∗ axes is called argument
of pericenter, denoted by ωkl

.
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