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The meaning of Einstein’s equation
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This is a brief introduction to general relativity, designed for both students and teachers of the
subject. While there are many excellent expositions of general relativity, few adequately explain the
geometrical meaning of the basic equation of the theory: Einstein’s equation. Here we give a simple
formulation ol this equation in terms of the motion of freely falling test particles. We also sketch
some of the consequences of this formulation and explain how it is cquivalent to the usual one in
terms of tensors. Finally, we include an annotated bibliography of books, articles, and websiles
sujtable Tor the student of relativity. © 2005 American Asseciation of Physics Teachers.

[DOI: 10.1119/1.1852541]

I. INTRODUCTION

General relativity explains gravity as the curvature of
space—time. [i’s all about geometry., The basic equation of
general relativity is called Einstein’s equation. In units where
c=8wG=1, il says

(1)

It looks simple, but what does it mean? Unfortunately, the
beautiful geometrical meaning of this ¢quation is a bit hard
to find in most treatments of relativity. There are many nice
popularizations that explain the philosophy behind relativity
and the idea of curved space—time, but most of them don’t
gel around to explaining Einstein’s equation and showing
how 1o work oul its consequences. There are also more tech-
nical intreductions which explain Einstcin’s cquation in
detajl—but here the geometry is often hidden under piles of
tensor calculus,

This is a pity, because there is an casy way o express the
whole content of Einstein’s equation in plain English, Afler a
suitable prelude, one can summarize it in a single sentence!
One needs a lot of mathematics to derive all the conse-
quences of this sentence, but we can work out some of its
consequences quite casily.

In what lollows, we slarl by outlining some differences
between special and general relativity. Next we give a verbal
formulation of Einstcin’s equation. Then we derive a few of
its consequences concerning tidal forces, gravitational
waves, gravitational collapse, and the big bang cosmology.
In an appendix we cxplain why our verbal formulation is
equivalent o the usual onc in terms of tensors. This article is
mainly aimed at those who teach relativity, but except for an
appendix, we have tried to make it accessible to students. We
conclude with a bibliography of sources to help teach the
subject.

GG,B=T(J',G .

IE. PRELIMINARIES

Before staling Einstein’s cquation, we need a little prepa-
ration. We assume the reader is somewhat familiar with spe-
cial relativity —otherwisc general relativity will be too hard.
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But there arc some big differences between special and gen-
eral relativity, which can cause immense confusion if ne-
glected.

In special relalivity, we cannot talk about absolute veloci-
ties. but only relative velocities. For example, we cannot
sensibly ask il a parlicle is at rest, only whether it is at rest
relative 1o another particle. The reason is that in this theory,
velocitics arc described as vectors in four-dimensional
space—lime. Switching to a different incrtial coordinate sys-
tem can change which way these vectors point relative o our
coordinate axes, but not whether two of them point the same
way.

In general relativity, we cannot even talk about relative
velocities, except for two particles at the same point of
space—lime—that is, at the same place at the same instant.
The reason is that in general relativity, we take very seriously
the notion that a vector is a little arrow sitting at a particular
peint in space—time. To compare vectors at different points
of space—time, we must carry one over to the other. The
process of carrying a vector along a path withoul turning or
stretching it is called “parallel transport.” When space—time
is curved, the result of parallel transport from one point 1o
another depends on the path taken, which is a direct conse-
quence of a curved space—time. Thus it is ambiguous to ask
whether two particles have the same velocity vector unless
they are al the same point of space—time,

It is hard to imagine the curvature of four-dimensional
spacc—tlime, but it is easy to sec it on a two-dimensional
surface, like a sphere. The sphere fits nicely in three-
dimensional Nat Euclidean space, so we can visualize veclors
on the sphere as “tangent vectors.” Il we parallel transport a
tangent vector from the north pole to the equator by going
straight down a meridian, we get a different resull than il we
go down another meridian and then along the equator as
shown in Fig. 1.

Because of the analogy to vectors on the surface of a
sphere, in general relativity veclors arc usually called *“tan-
gent vectors.” However, it is imporlant not to take this anal-
ogy too seriously. Our curved space—time need not be em-
bedded in some higher-dimiensional flat space—time for us to
understand its curvature, or the concept of a tangent veclor.
The matlernaiics of tensor calculus is designed to let us
handle these concepts “intrinsically” —i.c., working solely

© 2005 American Association of Physics Teachers 644



Fig. 1. Two ways o parallel transport a tangent vector from the north pole
to a point on the equator of a sphere.

within the four-dimensicnal space—time in which we (ind
ourselves, This is one reason tensor calculus is so important
in general relativity.

In special relativity we can think of an inertial coordinate
system, or “inertial frame,” as being defined by a field of
clocks, all at rest relative 1o each other. In general relativity
this makes no sensc, since we can only unambiguously de-
fine the relative velocity of two clocks il they are at the same
location. Thus the concept of inertial frame, so important in
special relativity, is banned [rom gencral relativity!

Il we are willing to put up with limited accuracy, we can
still talk about the relative velocity of two particles in the
limit where they are very close, since curvature cffects will
then be very small. In this approximate sense, we can talk
about a “local” inertial coordinate system. However, we
must remember that this notion makes perfect sense only in
the limit where the region of space—tlime covered by the
coordinate system goes o Zero in size.

Einstein’s equation can be expressed as a stalement about
the relative aceeleration of very close test particles in [ree
fall. Let us clarify these terms a bit. A “test particle™ is an
idealized point particle with energy and momentum so small
that its effcels on space—time curvature are negligible, A par-
ticle is said to be in “free fall” when its motion is affected by
no forces except gravity. In general relalivily, a test particle
in free fall will trace out a “*geodesic.” This means that its
velocity vector is parallel transported along the curve it
traces out in space—time. A geodesic is the closest thing there
is to a straight line in curved space—time.

This is casier to visualize in two-dimensional space rather
than four-dimensional spacc—time. A person walking on a
sphere “[ollowing their nose™ will trace out a geodesic—that
is, a greal circle. Suppose (wo people stand side-by-side on
the equator and start walking north, both following geode-
sics. Though they start out walking parallel to cach other, the
distance between them will gradually starl to shrink, until
finally they bump into cach other at the north pole. If they
didn’t understand the curved geometry of the sphere, they
might think a “force™ was pulling them together.

In general relativity gravity is not really a “foree,” but just
a marnifestation of the curvature of spacc—time. Note it is not
the curvature of space, but of space—time that is involved.

645 Am. J. Phys., Vol. 73, No. 7, July 2005

The distinction is crucial. Il you toss a ball, it lollows a
parabolic path. This is far from being a geodesic in space.
Space is curved by the Earth’s gravitational ficld, but it is
certainly not so curved as all that! The point is that while the
ball moves a short distance in space, it moves an cnormous
distance in time, because one second equals about 300000
km in units where ¢= [. Thus, a slight amount of space—time
curvature can have a noticeable effeet,

ITII. EINSTEIN’S EQUATION

To state Einstein’s cquation in simple English, we need to
consider a round bail of test particles that are all initially at
rest refative lo cach other. As we have scen, this is a sensible
notion only in the limit where the ball is very small. If we
start with such a ball of particles. it will, to second order in
time, become an ellipsoid as time passes. This should not be
loo surprising, because any lincar transformation applicd to a
ball gives an cllipsoid, and any transformation can be ap-
proximated by a linear one to first order. Here we get a bit
more: the relative velocity of the particles starts out being
710, 50 to first order in time the ball docs not change shape
at all: the change is a sccond-order effect.

Let V(1) be the volume of the ball alter a proper time ¢ has
clapsed, as measurcd by the particle at the center of the ball.
Then Einstein’s cquation says:

flow of r-momentum in ¢ direclion+

I'| flow of x-momentum in x direction-
2| flow of y-momentum in y dircction+
flow of z-momentum in z dircction

=0

@)
where these flows are measured at the center of the ball at
time zero, using local inertial coordinates, These flows are
caused by all particles and liclds. They form the diagonal
componen(s of a 4X4 matrix T called the *stress-cnergy
tensor.” The compenents T of this matrix say how much
momentum in the e direction is flowing in the 8 direction
through a given point of space—time, where o,8=1.¢.y,z.
The flow of -momentum in the r-direction is just the energy
density, often denoted p. The flow of x-momentum in the
x-direction is the “pressure in the x direction” denoted P,
and similarly for y and z. It takes a while to figure out why
pressure is really the flow of momentum, but it is eminently
worlh doing. Most texts explain this fact by considering the
examplc of an ideal gas.

In any event, we may summarize Einslein’s equation as
follows:
14 i
v =‘"E(P+P.r+Py+ P.). (3)
=0
This cquation says that positive energy density and positive
pressure curve space—time in a way that makes a freely fall-
ing ball of point particles tend to shrink. Since E=mc? and
we are working in units where ¢=1, ordinary mass density
counts as a form of cnergy density. Thus a massive object
will make a swarm of freely falling particles at rest around it
start o shrink. In short: gravity attracts.
We promised fo statc Einstein’s cquation in plain English,
but have not donc so yet. Here it is:
Given a small ball of freely falling test particles initially at
rest with respeet to cach other, the rate at which it begins to
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shrink is proporiional lo its volume times: the energy den-
sity at the center of the ball. plus the pressure in the x
dircction at that point, plus the pressure in the y direction,
plus the pressure in the £ direction.

One way to prove this is by using the Raychaudhuri cqua-
tion, discussions of which can be found in the textbooks by
Wald'” and by Ciufolini and Wheeler”> cited in the bibliog-
raphy. Butl an elemenlary proof can also be given starting
from first principles, as we show in the Appendix.

The reader who already knows somce general relativity
may be somewhat skeptical that all of Einstein’s equation is
encapsulated in this formulation. After all, Einstein’s equa-
tion in its usual tensorial form is really a bunch of equations:
the left and right sides of Eq. (1) are 4 X4 malrices. It is hard
to believe that the single Eq. (3) captures all that informa-
tion. It docs, though, as long as we include onc bit of finc
print: to get the full content of the Einstein equation from Eq.
(3), we must consider small balls with all possible initial
velocities—i.c., balls that begin at rest in all possible local
inertial reference frames.

Before we begin, it is worth noting an cven simpler for-
mulation of Einslein’s equation that applies when the pres-
sure happens to be the same in every direction:

Given a small ball ol freely falling test particles initially at
rest with respect to each other, the rate at which it begins to
shrink is proporticnal to its volume times: the cnergy den-
sity at the center of the ball plus three times the pressure at
that point,

This version is only sufficient for “isotropic™ situations: that
is, those in which all directions look the same in some local
inertial reference frame. But, since the simplest models of
cosmology treat the universe as isotroptc—at least approxi-
matcly, on large enough distance scales—this is all we shall
neced to derive an cquation describing the big bang!

IV. SOME CONSEQUENCES

The formulation of Einstein’s equation we have given is
certainly not the best for most applications of general rcla-
Gvity. For example, in 1915 Einstein used general relativity
to correctly compute the anomalous precession of the orbit of
Mercury and also the deflection of starlight by the Sun’s
gravitational (icld. Both these calculations would be very
hard starting from Egq. (3); they really call for the full appa-
ratus of tensor calculus. However, we can casily usc our
formulation of Einstein’s equalion to get a qualitative—and
somelimes even quantitative —understanding of some conse-
quences of general relalivily. We have already seen that it
explains how gravity attracts. We sketeh a lew other conse-
quences below.

A. Tidal foreces, gravitational waves

Let ¥(#) be the volume of a small ball of test particles in
free fall that arc initially at rest relative to cach other. In the
vacuum Lhere is no cnergy density or pressure, so V|,—q
=0, but the curvature of space—time can still distort the ball.
For exarnple, suppose you drop a small ball of instant coffec
when making coffee in the morning. The grains of coffec
closer to the earth accelerate toward it a bit more, causing the
ball to start stretching in the vertical direction. However, as
the grains all accelerate toward the center of the carth, the
ball also starts being squashed in the two horizontal direc-
tions. Einstein’s cquation says that if we treat the coffec

646 Am. I. Phys., Vol. 73, No. 7, July 2005

grains as test particles, these two cllects cancel each other
when we calculate the sccond derivative of the ball’s vol-

ume, leaving us with ¥],_,=0. [t is a lun exercise to check
this using Newlton’s theory of gravity!

This stretching/squashing of a ball of falling coffec grains
is an example of what people call “tidal forces.” As the
name suggests, another example is the tendency for the
ocean to be stretched in one direction and squashed in the
other two by the gravitational pull of the moon.

Gravitational waves arc another example of how space—
time can be curved even in the vacuum. General relativity
predicts that when any heavy object wiggles, it sends oul
ripples of space--time curvature which propagate at the speed
of light. This is far from obvious starting from our formula-
tion of Einstein’s equation! It also predicts that as one of
these ripples of curvature passes by, our small ball of initally
lest parlicles will be streiched in one transverse direction
while being squashed in the other {ransverse direction. From
what we have already said, these effects must precisely can-

cel when we compute V|,—q.

Hulse and Taylor won the Nobel prize in 1993 for careful
observations of a binary ncutron star which is slowly spiral-
ing down, just as scncral relativity predicts it should, as it
loses energy by emitting gravitational radiation2’?® Gravita-
tional waves have nol been directly observed, but there are a
number of projects under way to detect them.** For ex-
ample, the LIGO project will bounce a laser between hang-
ing mirrors in an L-shaped detector, to sce how one leg of the
detector is stretched while the other is squashed. Both legs
arc 4 km long, and the detector is designed Lo be sensitive o
a 107 '® m change in length of the arms.

B. Gravitational collapse

One remarkable fcature of this equalion is the pressure
tern1, which says that not only energy density but also pres-
sure causcs gravitational attraction. This may scem to violate
our intuition that pressure makes matter wanl (o expand!
Here, however, we are talking about gravitational cifecis of
pressure, which arc undetectably small in everyday circum-
stances. To sce this, let’s restore the lactors of ¢ and G. Also,
let’s remember that in ordinary circumstlances most of the
energy is in the form of rest energy, so we can write the
energy density p as p,c%, where p,, is the ordinary mass
density:

Vv 4G 2
V| = e PPy P). )

4 =0

On the human scale all of the terms on the right are small,
since G is very small and ¢ is very big. (Gravity is a weak
force!) Furthcrmore, the pressure terms are much smaller
than the mass density term, since the former has an extra c2.

There arc a number of important situations in which p
does not dominate over P. For example, in a neutron slar,
which is held up by the degencracy pressure of the neutro-
nium it consists of, pressure and energy density contribute
comparably to the right-hand side of Einstein's equation.
Morecover, above a mass ol about (wo solar masses a nonro-
tating ncutron star will incvitably collapse to [orm a black
hole, thanks in part to the gravilational attraction caused by
pressure.

J. C. Baez and E. F. Bumn 646



C. The big bang

Starting from our formulation of Einstein’s cquation, we
can derive some basic facts about the big bang cosmology.
Let us assume the universe is not only expanding but also
homogeneous and isotropic. The expansion of the universe is
vouched for by the redshifts of distant galaxics. The other
assumplions also seem to be approximately correct, at feast
when we average over small-scale inhomogencilics such as
stars and galaxics. For simplicity, we will imagine the uni-
verse is homogencous and isotropic even on small scales.

An obscrver at any point in such a universe would see all
objects receding from her. Suppose that, at some time =0,
she identifics a small ball B of test particles centered on her.
Suppose this ball cxpands with the universe. remaining
spherical as time passes because the universe is isotropic. Let
R(r) stand for the radius of this ball as a function of time.
The Einstein equation will give us an equation of motion for
R(r). In other words, it will say how the expansion rate of
the universe changes with time.

It is tempting to apply Eq. (3) to the ball B, but we must
take care. This equation applics to a ball of particles that arc
initially at rest relative to onc another—that is, one whose
radius is not changing at 1=0. However, the ball B is cx-
panding at t=0. Thus, to apply our formulation of Einstein’s
equation, we must introduce a second small ball of test par-
ticles that are at rest relative to each other at 1= 0.

Let us call this second ball B', and call its radius as a
[unction of time r(¢)}. Since the particles in this ball begin at
rest relative to one another, we have

F0)=0. (3)

To keep things simple, let us also assume that at r=0 both
balls have the exact same size:

r(0)=R(0). {6)

Equation (3) applics to the ball B', since the particles in
this ball are initially at rest relative to each other. Since the
volume of this ball is proportional to r3, and using Eq. (5),
the lcft-hand side of Eq. (3) becomes simply

14

Vv

3

(7

¥

=0 =0

Since we are assuming he universe is isotropic, we know
that the various components of pressure are cqual: P,=P,
= P.=P. Einstein’s cquation, Eq. (3), thus says that

3F

r

1
=—z(p+3P). )
=0 2
We would much preler to rewrite this expression in terms of
R rather than r. Fortunately, we can do this. At =0, the two
spheres have the same radius: #(0) = R(0). Furthermore, the
second derivatives arc the same: F(0)=R(0). This follows
from the equivalence principle, which says (hat, at any given
location, particles in free fall do not accelerate with respect
to each other. At the moment 1=0, each test particle on the
surface of the ball B is right next to a corresponding test
particle in B'. Since they are not aceelerating with respeet to
each other, the observer al the origin must see both particles
accelerating in the same way, so F(0)=R(0). It Tollows that
we can replace ¢ with R in the above equation, obtaining
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3R

[
R =—§(P+3P)- (9

=0

We derived this cquation for a very small ball, but in fact
it applics (o a ball of any size. This is because, in a homo-
geneous expanding universe, the balls of all radii must be
expanding at the same fractional rate. In other words, B/R is
independent of the radius R, although it can depend on time.
Also, there is nothing special in this equation about the mo-
menl 1=0, so the equation must apply at al} times. In sum-
miary, therelore, the basic equation describing the big bang

cosmology*®~*' is

3R 1

i 2(,9-!—3!“). (10
where the density p and pressure P can depend on time but
not on position. Here we can imagine R to be the separation
between any two “galaxies.”

To go [urther, we must make more assumptions about the
nature of the matter fitling the universe. One simple model is
a upiverse filled with pressureless matter. Until recently, this
was thought to be an accurate model of our universe. Setting
P=0, we obtain

3R P
®- "3 (11}
If the encrgy density of the universe is mainly duc to the

mass in galaxics, “‘conservation of galaxies” implies that
pR3=k for some constant &. This gives

3R k

R (12)
or

) k

R=—'6""é§'. (13)

Amusingly, this is the same as the equation of motion [or a
particle in an attractive 1/R? lorce ficld. In other words, the
equation governing this simplified cosmology is the same as
the Newlonian equation for what happens when you throw a
ball vertically upwards from the earth! This is a nice example
of the unity of physics. Since “whatever goes up must come
down—unless it cxceeds escape velocity,” the solutions of
this equation look roughly like those shown in Fig. 2.

In other words, the universe started out with a big bang! It
will expand forever if its current rate of expansion is suffi-
ciently high compared to its current density, but it will recol-
lapse in a “big crunch” otherwise.

D. The cosmological constamnt

The simplified big bang model just described is inaccurate
for the very carly history of the universe, when the pressure
of radiation was tmportant. Morcover, recent observations
secm Lo indicate that it is scriously inaccurate ¢ven in the
present cpoch. First of all, it seems that much of the cnergy
density is not accounted for by known forms of matter. Still
more shocking, it scems that the expansion of the universe
may be accelerating rather than slowing down! One possibil-
ity is that the energy densily and pressure are nonzero even
for the vacuum. For the vacuum to not pick out a preferred

J. C. Baez and E. F. Bunn 647



open

critical

closad

]

Fig. 2. The size of the universe as a function of time in three scenarios: open
{where it expands forever), closed (where it recollapses), and critical (where
it expands forever, but just barely).

notion of *rest,” its stress-energy tensor must be propor-
tional te the metric. In tocal inertial coordinates this means
that the stress-energy tensor of the vacuum must be

A O 0 0

0 -A 0 0
™o o -a o | (14)
0 0 0 —A

where A is called the “cosmological constant.” This
amounts lo giving emptly space an energy density equal 1o A
and pressure cqual to — A, so that p-+3 P for the vacuum is
—2A. Here pressure elfects dominate because there are
more dimensions of space than of time! Il we add this cos-
mological constant term to Eq. (10}, we get

3R 1
+ = zpt3P-24A), (15)

R
where p and P are the energy density and pressure due lo
matter. If we treat matter as we did before, this gives

3R d +A {16)

—=—553+A.

R 2R?
Thus, once the universe expands sufficiently, the cosmologi-
cal conslant becomes more important than the energy density
of matter in determining the fate of the universe, I A>0,a
roughly exponential expansion will then ensue. This scems
1o be happening in our universe now>?

E. Spatial curvature

We have emphasized that gravity is duc not just to the
curvature of space, but of space—fime. In our verbal formu-
lation of Einstein’s equation, this shows up in the fact that
we consider particles moving forwards in time and study
how their paths deviate in the space directions. However,
Einslein’s equation also gives information aboul the curva-
ture of space. To illustrate this, it is casiest to consider not an
expanding universe but a static one.

When Einstein first tried to use general relalivity to con-
struct a model of the entire universe, he assumed that the
universe must be static—although he is said to have later
described this as “his greatest blunder.” As we did in the
previous section, Einslein considered a universe containing
ordinary matter with densily p, no pressure, and a cosmologi-
cal conslant A. Such a universc can be static—the galaxies
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can remain at rest with respect to cach other—only il the
right-hand side of Eq. (13) is zero. In such a universe, the
cosmological constant and the density must be carefully
“tuned” so that p=2A. It is tempting to conclude that
space—time in this model is just the goed old flal Minkowski
space—time of special relativity. In other words, one might
guess that there are no gravitational cffects at all. After all,
the right-hand side of Einstein’s equation was tuned to be
zero. This would be a mistake, however, 1t is instructive lo
see why,

Remember that Eq. (3) contains all the information in Ein-
stein’s equation only if we consider all possible small balls.
In all of the cosmological applications so far, we have ap-
plicd the cquation only to balls whose centers were at rest
with respecet 1o the local matter. It turns out that only for such
balls is the right-hand side of Eq. (3) zero in the Einstein
slalic universe,

To see this, consider a small ball of test particles, initially
al rest relative to each other, that is moving with respect o
the malter in the universe. In the local rest frame of such a
ball, the right-hand side of Eqg. {3) is nonzero. For one thing,
the pressure due to the matter no longer vanishes. Remember
that pressure is the Mlux of momentum. In the frame of our
moving sphere, matter is flowing by. Also, the encrgy density
goes up. both because the matter has kinetic energy in this
frame and because of Lorentz contraction. The end result, as
the reader can verify, is that the right-hand side of Eg. (3) is
negalive for such a moving sphere. In short, although a sta-
tionary ball of test particles remains unchanged in the Ein-
sicin static universe, our moving ball shrinks!

This has a nice geometric interpretation: the geometry in
this model has spatial curvalure, As we noted in Sec. [l,ona
positively curved surface such as a sphere, initially parallel
lines converge toward one another. The same thing happens
in the three-dimensional space of the Einstein static universe.
In lact, the geometry of space in this model is that of a
three-sphere. Figure 3 illustrates what happens.

One dimension is suppressed in this figure, so the two-
dimensional spherical surface shown represents the three-
dimensional universe. The small shaded circle on the surface
represents our tiny ball of test particles, which starts at the
cquator and moves north. The sides of the sphere approach
cach other along the dashed geodesics, so the sphere shrinks
in the (ransverse dircction, although its diameter in the direc-
tion of motion does not change.

As an exercise, readers who want to test their understand-
ing can fill in thc mathematical details in this picturc and
determine the radius of the Einstein static unjverse in terms
of the density. Here are step-by-step instructions:

» Imagine an observer moving at speed v through a cloud of
stationary particles of density p. Use special relativity to
determine the encrgy density and pressure in the observer’s
rest [rame. Assume {or simplicity that the observer is mov-
ing fairly slowly, and thus keep only the lowest-order non-
vanishing lerm in a power series in u.

» Apply Eq. (3) to a spherc in this frame, including the con-
tribution duec to the cosmological constant (which is the
same in all reference frames), You- should find that the
volume of the sphere decreases with V/Vx —py? to lead-
ing order in v.

+ Supposc that space in this universe has the geometry of a
large three-sphere of radius Ry, . Show that the radii in the
directions transverse to the motion start to shrink at a rate
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Fig. 3. The motion of a ball of test particles in a spherical universe.

given by (R/R)|,—g=— Ulei.. (If, like most pcople, you
arc better at visualizing two-spheres than three-spheres, do
this step by considering a small circle moving on a two-
sphere, as shown above, rather than a small sphere moving
on a three-sphere. The result is the same.)

+ Since our little sphere is shrinking in two dimensions, its

volume changes at a rale V/V=2R/R. Use Linstcin’s

equation to relate the radius Ry of the universe to the
density p.

The final answer is R;= \/Zl—p as you can find in standard
texibooks.

Spatial curvature like this shows up in the expanding cos-
mological medels described earlicer in this section as well. In
principle, the curvature radius can be found from our formu-
lation of Einstein’s equation by similar reasoning in these
cxpanding models. However, such a calculation is extremely
messy. Here the apparatus of tensor calculus comes to our
rescue.
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APPENDIX A: THE MATHEMATICAL DETAILS

To see why Eq. (3) is equivalent to the usual formulation
of Einstein’s cquation, we need a bit of tensor calculus. In
particular, we need to understand the Riemann curvature ten-
sor and the geodesic deviation equation. For a detailed ex-
planation of these, the reader must turn 1o some of the lexts
in the bibliography.'®721-2 Here we bricfly sketch the main
ideas,

When space—time is curved, the result of parallel transport
depends on the path taken. To quantify this notion, pick two
veclors & and p al a point p in space—time. In the limit
where €é—0, we can approximalely speak of a “parallelo-
gram” with sides ex and ev. Take another vector w at p and
parallel transport it first along ev and then along €u to the
opposite corner of this parallelogram. The result is some vec-
tor wy . Alternatively, parallel transport w first along eu and
then along €v. The result is a slightly different vector, w, as
shown in Fig. 4. The limit
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*
r

Fig. 4. Parallel transporting a vector w from one corner of a paraltelogram
to the oppesite corer in two ways: up and then across, giving w,, or across
and then up, giving w,.

Lowaw, ‘
lim———=R{u,v)w (Al)

e—0 €
is well-delined, and it measures the curvawure of space—time
al the point p. In local coordinates we can write it as

R(uwyw=RE, uPv"w?, (A2)

where as usual we sum over repeated indices. The quantity
R}ys is called the “Riemann curvature tensor.”

We can use this tensor Lo compute the relative acceleration
ol nearby particles in free fall il they arc initially at rest
relative to one another. Consider two freely falling particles
at nearby points p and ¢. Let v be the velocity of the particle
at p, and let ex be the veclor from p to g. Since the two
particles start out at rest relative to one other, the velocity of
the particle at ¢ is oblained by parallel transporting v along
€l

Now lel us wait a short while, Both particles trace out
geodesics as {ime passes, and al time e they will be at new
points, say p’ and g¢’. The point p' is displaced from p by
an amount €v, so we get a little parallelogram, exactly as in
the definition of the Ricmann curvature as shown in Fig. 5.

Next let us compute the new relative velocity of the two
particles. To compare veetors we must carry one to another
using parallel transport. Let v be the veclor we get by taking
the velocity vector of the parlicle at p’ and parallel transport-
ing it to ¢’ along the top edge of our parallelogram. Let v,
be the velocity of the particle at ¢'. The difference v,— v is
the new relative velocity. Figure 6 shows a picture of the
whole situation. The vector v is depicied as shorter than ep
for purely artistic reasons.

It follows that over this passage of time, the average rela-
tive acceleration of the two particles is a=(v,—v )/ €. By
Eq. (Al),
Iin;%=R(u,u)u. {A3)
e

Fig, 5. Freely falling particles at p and ¢ trace out geodesics taking them to
p'andg’.
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Fig. 6. Paralle] transporting the velocity vector of the particle at p’ 1o the
point ¢’ gives the vector v, . The velocity vector of the particle at ¢ is v,.

S0
o a
lim—=R{u.v)v. (Ad)
e
This is called the “geodesic deviation equation.” From the
definition of the Riemann curvature it is easy lo see (hat
R(u,v)w=—R(v.u)w, so we can also writc this cquation as
[7
im—=—RY pB,7,%
lim R0 uive.

e—

(A5)

Using this equation we can work out the second time de-
rivative of the volume V(r) of a small ball of test particles
that start out at rest relative to each other. As we mentioned
carlicr, to second order in time the ball changes o an ellip-
soid. Furthermore, since the ball starts oul at rest, the prin-
cipal axes of this cllipsoid don’t rotate initially. We can
therefore adopt local inertial coordinates in which, o second
order in ¢, the center of the ball is al rest and the three
principal axes of the ellipsoid are aligned with the three spa-
tial coordinates. Let /(1) represent the radius of the jth axis
of the cllipsoid as a function of time. If the ball’s initial
radius is e, then

ri{ty=e+ talrr+O(*),
or in other words,
7 a’
lim—=Ilim—.

7
=o' —o

Here the acceleration a/ is given by Eq. (A5). with i being a
vector of [ength €in the jth coordinate direction and v being
the velocity of the ball, which is a unit vector in the time
direction. In other words,

i 0

im——r-

10?1
No sum over j is implied in the above cxpression.

Because the volume of our ball is proportional to the prod-

uct of the radii, ¥/V—2;#ir/ as 1—0,

= -—RJ"Bj‘;u'BU‘5= —R;.

. — _pa
lim 7 =—=Ry.,.
Ve ly=p

(AG)

where now a sum over @ is implied. The sum over « can
range over all four coordinates, not just the three spatial
ones, since the symmetries of the Ricmann tensor demand
that R}, =0.

The right-hand side is minus the time-lime component of
the “Ricci tensor”
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R'G.-S‘= REO’(S' (A7)
That is,
li Y R (A8)
im— =
V-~0V o I

in local inertial coordinates where the ball starts out at rest.

In short, the Ricei (ensor says how our ball of freely fall-
ing test particles starts changing in volume. The Ricci tensor
only captures some of the information in the Riemann cur-
vature tensor, The rest is caplured by something called the
*Weyl tensor,” which says how any such ball starts changing
in shape. The Weyl tensor describes tidal lorces, gravitational
waves and the Jike,

Now, Einstein’s equation in its usual form says

Here the right side is the stress-energy tensor, while the left
side, the *Einstein tensor,” is just an abbreviation for a quan-
lity constructed from the Ricci tensor:

GnﬁzRaﬁ_ %gaﬁR¥ (A]O)
Thus Einstein’s equation really says

Rapg= 384gR7=Tap. (Al1)
This implies

R4~ 383RI=T%, (A12)
but gZ=4, so

—R,=T5. (A13)
Plugging this into Eq. (Al1)}, we get

Ra,G= Ta,B— "l':gﬂ,BT$° (Al4)

This is an equivalent version of Einslein’s equation, but with
the roles of R and T swilched! The good thing about this
version is that it gives a formula for the Ricei tensor, which
has a simple geometrical meaning.

Equation (A14) will be true if any onc component holds in
all local inertial coordinate systems. This is a bit like the
observation that all of Maxwell’s equations arc contained in
Gauss's law and V- B=0. Of course, this is only truc if we
know how the ficlds transform under change of coordinales.
Here we assume that the transformation laws are known.
Given this, Einstein’s equation is equivalent to the fact that

Ry=Ty— %S’HT; (A15)

in every local inertial coordinate systern about every point,
In such coordinates we have

-1 0 0 0
0 1 0 O
7lo o1 0 (a16)
6 0 01
so g,=—1 and
TY= =T+ Tt Tyt T (A17)
Equation (A15) thus says that
Ry=5(Ty T+ T)+T.,). (A18)
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By Hq. (A8), this is equivalent (o

lim—

1
= (Tt Tt Ty + Teo).
tri’ov 2 I (¥ ry

t=0

(A19)

As promised. this is the simple, tensor-caleulus-free formu-
lation of Einstein’s equation.

APPENDIX B: REFERENCES

We provide an annotated bibliography of material on rela-
tivity that we have found particularly helpful {or students.

1. WEBSITES

There is a lot of malerial on general relativity available
online. Most of it can be found starting from here:

1. Relativity on the World Wide Web. C. Hillman, hitp:/math.ucr.edu/
home/bacz/relativityJuml
The beginner will especially enjoy the many gorgeous
websites aimed at helping one visualize relativity. There
are also books available for free online, such as this:
. Lecture Notes on General Relativity, 8. M. Camoll, hup:#/
pancake.uchicage.cdu/~carroll/notes/
The free online journal Living Reviews in Relativity is an
excellent way to learn more aboul many aspects of rela-
tivity. One can access it at:
3. Living Reviews in Relativity, http://www livingreviews.org
Part of learning relativity is working one’s way through
ccriain classic confusions. The most common are dealt
with in the “Relativity and Cosmology™ scction of this
site:
4. Frequently Asked Questions in Physics, ediled by D. Koks, hip://
math.ucredwhome/baca/physics/

2

2. NONTECHNICAL BOOKS

Belore diving into the details of general relativity, it is
good 1o get oriented by reading some less technical books.
Here arc lour excellent ones written by leading experts on
the subject:

5. General Relativity from A to B, R. Geroeh (University of Chicago
Press, Chicago, 1981).

6. Black Holes and Time Warps: Einstein's Outrageous Legacy. K. §.
Thome (Norton, New York, 1995).

7. Gravity from the Ground Up: An Intreductory Guide to Gravity
and General Relativity, B. F. Schutz (Cambridge U. P, Cambridge,
2003).

8. Space, Time, and Gravity: the Theory of the Big Bang and Black
Holes, R. M, Wald (University of Chicago Press, Chicago, 1992).

3. SPECIAL RELATIVITY

Before delving into general relativily in a more technical
way, onc must get up (o speed on special relativity. Here are
two cxeellent texts for this:

9. Introduction to Special Relativity, W. Rindler (Oxford U. P, Oxford,
1991).
10. Space—time Physics: Introduction to Special Relativity, E. F. Taylor
and J. A. Wheeler (Freeman, New York, 1992).
4. INTRODUCTORY TEXTS

When one is ready lo tackle the details of general relativ-
ity, it is probably good 1o start with one of these texibooks:

651 Am. J. Phys., Vol. 73, No. 7, July 2005

1. Introducing Einstein’s Relativity. R. A, 1>’ Inverno (Oxford U. P, Ox-
lord, 1992},

12, Gravity: An Introduction to Einstein’s General Relativity. J. B.
Hartle (Addison-Wesley, New York. 2002),

i3, Introduction to General Relativity, L. Hughston and K. I Tod {Cam-
bridge U. P, Cambridge, 1991).

14. A First Course in General Relativity. B. F. Schutz (Cambridge U. P,
Cambridge, 1985},

15, General Relativity: An Introduction to the Theory of the Gravita-
tional Field, H. Stephani (Cambridge U. P, Cambridge, 1950).

5. MORE COMPREHENSIVE TEXTS

‘To become an expert on general relativity, one really must
tackle these classic texts:

16. Gravitation, C. W. Misner, K. S, Thorne, and J. A. Whecler (Freeman,
New York, 1973).

17. General Relativity. R. M. Wald (University of Chicago Press, Chicago,
1984).
Along with these textbooks, you’ll want to do lots of
problems! This book is a usclul supplement:

18, Problem Book in Relativity and Gravitation, A. Lightman and R. H.
Price (Princeton U, P., Princeton, 1975).

6. EXPERIMENTAL TESTS

The experimental support for gencral relativity up 1o the
early 1990s is summarized in:

19, Theory and Experiment in Gravitational Physics, Revised ed.. C. M.
Will (Cambridge U. P, Cambridge, 1993).
A more up-to-date treatment of the subject can be found
11

20, “The Confrontation between General Relativity and Experimemt,” C.
M. Will, Living Reviews in Relativity 4 (2001). Available online at
http:/fwww livingreviews.org/lr-2001-4

7. DIFFERENTIAL GEOMETRY

The serious student of general relativity will experience a
constant need to learn more tensor calculus—or in modern
terminology, “diflerential gcometry.” Some of this can be
found in the texts listed above, but it is also good to read
mathcmatics texts. Here are a few:

21, Gauge Ficlds, Knots and Gravity, J. C. Bacz and J. P. Muniain {World
Scientific, Singapore, 1994).

22, An Introduction to Differentiable Manifolds and Riemannian Ge-
ometry, W. M. Boothby (Academic, New York, 1986),

23, Semi-Riemannian Geometry with Applications to Relativity, B,
O’Neill (Academic, New York, 1983).

8. SPECIFIC TOPICS

The references above arc about general relativity as a
whole. Here are some suggested starting points for some of
the particular topics touched on in this article.

d. The meaning of Einstein’s equation

Feynman gives a quite different approach to this in:
24. The Feynman Lectures on Gravitation, R. P. Feynman er al. (West-
view, Boulder, CO, 2002).

His approach focuses on the curvature of space rather
than the curvature of space—time.
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b. The Raychaudhuri equation

This equation, which is closely rclated to our formulation
of Einstein’s equation, is trealed in some standard textbooks,
including the one by Wald mentioned above, A detailed dis-
cussion can be found in

25, Gravitation and Inertia, I. Ciufolini and ), A. Wheeler (Princeton U.
P.. Princeton, 1995),

¢. Gravitational waves

Here are two nontechnical descriptions of the binary pul-
sar work for which Hulse and Taylor won the Nobel prize:

27, “The Binary Pulsar: Gravity Waves Exist,” C. M. Will, Mercury,
Nev-Dec 1987, pp. 162=174.

28, “Gravitational Waves from an Orbiting Pulsar,™ J. M. Weisberg, J.
H. Taylor, and L. A. Fowler, Sci. Am., Get 1981, pp. 7482,
Here is a review article on the ongoing efforts to directly detect
gravitational waves:

29, “Detection of Gravitational Waves,” I, Lu, D. G. Blair, and C. Zhao,
Rep. Prog. Phys., 63, 1317-1427 (2000).
Some present and future experiments 1o detect gravila-
tional radiation arc described here:

30. L1IGO Laboratory Home Page, hitp//www.ligo.caliech.edu/

31. The Yirgo Project, hitp:/Awww.virgodnf.iv

32. Laser Interferometer Space Antenna, hitp://lisa.jpl.nasa.gov/

d. Black holes

Astrophysical cvidence that black holes exist is summa-
rized in:
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33. “Evidence for Black Holes,” M. C. Begelman, Science 300, 18398-
1903 (2003).
A less technieal discussion of the particular case of the
supermassive biack hole at the center of our Milky Way
Galaxy can be found here:

34, The Black Hole at the Center of Qur Galaxy, F, Melia (Princeton U.
P., Princeton, 2003),

e. Cosmology

There are lots of good popular books on cosmology. Since
the subject is changing rapidly, pick one that is up to date. At
the time of this writing, we reconmunend:

35. The Extravagant Universe: Exploding Stars, Dark Energy, and the
Accelerating Cosmos, R. P. Kirshner (Princeten U. P, Princeton,
2002).

A good online source of cosmological information is:

36. Ned Wright's Cosmeology Tutorial, hipi/www.astro.ucla.cdu/
~wright/cosmolog.him
The following cosmology textbooks are arranged in in-
creasing order of technical difficulty:

37. Cosmology: The Science of the Universe, 2nd ed., E. Harrison (Cam-
bridge U. I, Cambridge, 2000).

38. Cosmology: a First Conrse, M. Lachitze-Rey (Cambridge U, P.. Cam-
bridge, 1995).

39. Principles of Physical Cosmology. F. !. E. Pecbles (Princeton U. P,
Princeton, 1993).

40, The Early Universe, E. W. Kolb and M. 8. Turner (Addison-Westey,
New York, 1990).

41, The Large-Scale Structure of Space—time, S. W. Hawking and G. F.
R. Ellis {Cambridge U. P., Cambiidge, 1975).
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