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Purpose of AO3 group

- Formation process of merging binary black holes
(BBHSs)

- Formation of massive binary stars (Omukal,
Hosokawa, Machida, Susa)

- Evolution of massive binary stars (Fujii, Tanikawa)

- |solated binary stars

- Binary stars in globular clusters (GCs)




|solated binary stars
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GC Binary stars

Formation of two single BHs
at different places in a GC

Dynamical formation of BBHs
No Roche-lobe overflow

BHs are the most massive e
e Exchange interaction
Objects (Hut, Bahcall 1983)

Preferential falling into the
GC center

Preferential retention in
binary stars




How do they look?
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Plan for isolated binary stars

Example of BPS

Time (Myr)

Binary population synthesis (BPS)
technique for all metallicity (Z/
Zo=0 - 1.5)
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Importance of EMP stars

The number

- Formation of massive BHs of stars 7/7Z>1067

: ?/(;/Sesk stellar-wind mass 7/Z<106?

. Two transitions from Z/
Z@:O to Z/Z@: 5X-| 0_3

Stellar mass

- Top heavy Initial mass red suserciant
function (IMF) to top light PErS

o - @D

Common envelope

@<

BBH pOpUlathn Mass transfer
changes drastically. Kinugawa et al. (2014)

- Blue supergiant star to &
red supergiant star Blue supergiant




Timeline

- First stage (present - 2019.037)

- Making evolution track of EMP stars (with Takashi Yoshida-
san)

. BPS for EMP binary stars (with Kinugawa-san)

- Existing initial conditions of massive binary stars
- Second stage (2019.047 - 2022.03)
- BPS for all metallicity binary stars

- Accurate initial conditions of massive binary stars (Susa
san’s talk)



Plan for GC binary stars

Brute-force algorithm (N<106)

*‘\*

- N-body simulation for large GCs
(N=106)

. Previous studies

- N-body simulation with N=10%

AT 2014; MF, AT+ 2017

( 2014, ’ +20 ) \ * Gravitational force
. Monte Carlo simulation

(Rodriguez et al. 2016) Tree algorithm for GCs (N>106), not

for cosmological S|mulatlon
- Pop lll small cluster

(Sakurai+MF+2017) Q
O O

- N-body simulation for small GCs
(N=109%)

- Disrupted GCs

\

- Young (~ several Gyrs) GCs

+




Small or young GCs

The number of
GCs

- Disrupted GCs ’o,’l‘nitial
| | Disrupted GCs
- Small GCs dominate GC population /
- Initial cluster mass function: «
M-2 Present-day
- Present-day cluster mass
funciton: log normal at peak ~ GC mass
2% 1 O5M©
The number Young GCs
of BBH
- Young GCs (~ a few Gyr) mergers
- BBHs are formed at present. Old GCs

- Delay time distribution: « t-!

Cluster age



Timeline

- First stage (present - 2019.037)
- N-body simulation for small GCs
- Existing initial conditions
. Popl/II/Ill evolution model (Z/Z+=0, 5x10-3 - 1.5)

- Developing N-body simulation code for large GCs (with Iwasawa-san at
RIKEN AICS)

- Second stage (2019.047 - 2022.03)
. N-body simulation for small and large GCs
. Accurate initial conditions (Susa san’s talk)

- Popl/ll/ll and EMP stellar evolution model



Expected results

- |dentification of BBH origin(s)
- Popl/ll, or Pop Ill/EMP stars 7

. Constraints on Pop Illl formation rate
- Constraints on cosmic metal evolution
- |Isolated or GC binary stars ?

. Constraints on GC formation model



Collaboration

- Other A groups

- Finding BBH population(s) other than from
Isolated and GC binary stars

- B groups

- |dentification of NS-NS/BH origin(s)

- Formation and evolution of X-ray sources
- C groups

- Feedback to supernova explosion model



Summary

- Evolution pathway to BBH populations
- |solated binary stars
- All metallicity range

- EMP binary stars have been not yet investigated In
the world.

- GC binary stars

- N-body simulation of large (106) and small (10°) GCs



BBH populations

GC BBHSs

Mass
ratio

Primary mass
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Tree algorithm for a GC

- Close encounter
- 4th order integration scheme

- usually 2nd order integration scheme used for
tree algorithm

- Binary treatment
- KS regularization

- Algorithmic regularization



Dragon simulation

- N-body simulation of a large GC (~106)

- But, the Initial density Is unrealistically small.

Wang et al. (2016)



Eccentricity@ 1 OHz

2.5x10° binary—single BBH Eccentricity Distribution at 10Hz
. . o T Rodriguez et al. 2016
scattering experiments :

[ GW inspiral mergers
[ Post-interaction GW mergers
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