中間質量ブラックホールによる 白色矮星の潮汐破壊中に伴う 熱核爆発に関する研究 谷川 衝 (東京大学総合文化研究科) 「招巨大ブラックホール研究推進連絡会」 第5回ワークショップ 2018年01月08日 東北大学片平さくらホール

Contents

- Introduction of tidal detonation
- Spurious heating in SPH simulation (Tanikawa et al. 2017, ApJ, 839, 81)
- High resolution study of tidal detonation (Tanikawa 2017, arXiv:1711.05451, ApJ submitted)
- Tidal double detonation (Tanikawa 2017, arXiv: 1711.07115, MNRAS Letters accepted)

Intermediate Mass Black Hole (IMBH)

- $\cdot\,$ Black hole (BH) with 10²-10⁵M $_{\odot}$
 - · Stellar-mass BH (sBH): <10²M⊙
 - \cdot Massive BH (MBH): >106M \odot
- · IMBH Candidates
 - · M82 X-1 (Matsumoto et al. 2001)
 - · HLX-1 (Farrell et al. 2009)
 - · CO-0.40-0.22 (Oka et al. 2016)
 - IRS13E complex (Tsuboi et al. 2017)
- An important key to clarify the formation process of MBHs

The current status of search for BHs

Strategies of IMBH survey

- Accretion disk (by X-ray observatory)
 - At most Eddington luminosity (not so luminous)
 - Super Eddington luminosity (strongly depending on line-ofsight directions)

· Inspiral of a BH (by GW observatory)

- Space-based GW detector required (e.g. LISA, DECIGO)
 - LIGO, VIRGO & KAGRA are ground-based detectors.
- · Beyond 2030
- Tidal disruption events (TDEs) of white dwarfs (WD) (by optical observatory)

Tidal Disruption Events (TDEs)

- Tidal disruption of a star (e.g. main sequence stars) by a BH
 - Bright flare powered by accretion of the stellar debris
- Several ten candidates (Kommosa 2015)
 - TDEs of main sequence stars
 - \cdot No conformed WD TDEs

BH mass for WD TDE

Tidal detonation in a WD TDE

- A WD approaches to an IMBH, and tidally disrupted.
- The WD is compressed in the direction perpendicular to the orbital plane.
- The WD is heated by the compression.
- The heating triggers explosive nuclear reactions (tidal detonation).
- The explosive nuclear reactions yield radioactive nuclei, such as ⁵⁶Ni.
- Radioactive decay of ⁵⁶Ni powers the emission from WD TDEs, similarly to type la supernovae (SNe la).
- WD TDEs at cosmological distance will be observed similarly to SNe Ia.

Estimated luminosity

 WD TDEs will be observed as thermonuclear transients powered by radioactive decay of ⁵⁶Ni.

- · Similar to SNela
- The estimated luminosity is larger than accretion-powered luminosity of the WD TDEs by two orders of magnitude.
- Jet luminosity would be much more luminous than the thermonuclear luminosity, but should have very small opening angle.

Optical surveys

- WD TDEs can be observed by optical observatories, similarly to SNe Ia.
- · Many optical surveys are in progress and planning.
 - · Current surveys: iPTF, HSC, etc.
 - Future surveys: ZTF, LSST, etc.
- WD TDEs may lurk in large archival data of current and future optical surveys.

Revisit of tidal detonation

- What compression is required?
- Adiabatic compression is not sufficient for tidal detonation.
 - Density must be increased by five orders of magnitude.
 - Such orbits are impossible.
- Shock compression is required.

Previous study

- Do previous studies follow shock compression?
- · Rosswog et al. (2008; 2009)
 - Smoothed Particle Hydrodynamics (SPH) simulation of WD TDEs
 - · A large amount of ⁵⁶Ni
 - · SNela like transients
- · But,
 - They didn't check convergence of mass resolution.
 - They didn't check the emergence of shock wave.

Our previous study

- SPH simulation in the same way as Rosswogs'
- Convergence check with the number of SPH particles N=10⁴-10⁷
 - Rosswog's N is ~10⁶
- Amounts of synthesized nuclear elements are not converged.
 - These amounts become smaller with N increasing.

Spurious heating

- · Low resolution (small N)
 - Few particles in the direction perpendicular to the orbital plane
 - Incorrect interaction between distant particles
 - Heating due to their supersonic motion.
- High resolution (large N)
 - No interaction between distant particles
 - No heating even if these distant particles have supersonic relative velocity
- We made it clear that explosive nuclear reactions in Rosswog's simulation are due to spurious heating, not due to shock heating (physical heating).

Is tidal detonation false?

- The answer is "No. Not necessarily."
- · Rosswog's results were incorrect.
- But, we didn't deny the presence of tidal detonation.
- · Tidal detonation could happen possibly.

High-resolution study

- We confirm whether tidal detonation occurs or not.
- We perform sufficiently high-resolution simulation, using 3D SPH and 1D mesh simulation technique, in order to capture genuine shock waves.
- We adopt an initial condition in which tidal detonation could occur easily.

Outline of our method

- Choose initial conditions: WD mass and composition, IMBH mass, and WD-IMBH orbit
- Perform 3D SPH simulation without nuclear reactions
- Extract data of flow structure in the z-axis direction from 3D SPH simulation as 1D initial conditions
- Perform 1D mesh simulation using the data as the initial conditions

Initial conditions

- $\cdot\,$ WD mass and composition
 - · WDs: 0.1-0.5M⊙ HeWD, 0.5-1.1M⊙ COWD, 1.1-1.4M⊙
 - $\cdot~$ Our choice: 0.45M $\odot~$ HeWD
- · IMBH mass
 - · IMBHs: 10²-10⁵M.
 - Our choice: 300Mo
- · WD-IMBH orbit
 - · Parabolic orbit
 - · Deep encounter ($\beta = R_t/R_p = 7$)
- R_p: pericenter distance R_t: tidal radius $R_{\rm t} = \left(\frac{M_{\rm WD}}{3M_{\rm IMRH}}\right)^{1/3} R_{\rm WD}$

3D SPH simulation

Our SPH code

- The conventional algorithm, similar to GADGET
- · Using FDPS (Iwasawa, AT+16)
- Optimization by SIMD(AT+12ab)
- Helmholtz EoS (Timmes, Swesty 2000)
- Oakforest-PACS (OfP) at JCAHPC, Kashiwa
- The number of SPH particles (N) for a WD: 4.7M-300M
- · IMBH gravity: Newton gravity

Extract 1D data from 3D data

- Intend to minimize 3D effects, e.g. tidal effect
- Extract portions just before bouncing back
- Extract a portion with the highest density among the above portions
- Use 3D data of density and v_z velocity, not temperature

Comparison of 1D with 3D

- Density profiles (>2x10⁵gcm⁻³) are in good agreement.
 - A shock wave at >10⁶gcm⁻³ is important for the emergence of detonation.
 - Compression increases overall density by a factor of at most 5.
- Velocity profile is underestimated at the edge.
 - Disadvantage for the emergence of detonation

1D mesh simulation

- · FLASH code (Fryxell et al. 2000)
 - Equation of state routine "Helmholtz EoS"
 - Nuclear reaction network routine "Aprox13"
 - · Neither self gravity nor IMBH gravity
- · XC30 at CfCA, NAOJ

Comparison of 1D with 3D

 $\cdot\,$ We follow the record of sampling SPH particles at the extracted portion.

- We perform 1D simulation, turning off nuclear reaction network for this comparion.
- Density and vz velocity are in good agreement between 3D and 1D simulations.
- $\cdot\,$ 3D effects are not significant in this phase.

Failure case of detonation

Success case of detonation

Convergence check 1

- This is convergence check of 1D results with different N in 3D SPH.
 - This is NOT convergence check of 1D resolution.
- $\cdot\,$ For all the N cases, detonation emerges.

Convergence check 2

- $\cdot\,$ This is a difference portion from the last slide
- $\cdot\,$ For N<75M case, detonation appears.
- \cdot For N>=75M cases, detonation wave disappears.
- The results are not converged!

The reason for the disappearance (1)

 3D SPH simulation is not converged in N<75M, especially at the edge of the WD.

 The density at the edge is overestimated for small N cases.

 This is because SPH particles have large kernel lengths for small N cases.

The reason for the disappearance (2)

 Just before a shock wave emerges, not-yet shocked region has larger density for smaller N cases, if density is > 10⁶ gcm⁻³.

- Condition of initiation of detonation steeply depends on density (> 10⁶ gcm⁻³) at not-yet shocked regions.
 - Detonation wave is easily generated for smaller N cases.

Is tidal detonation false again ?

- The answer is "No".
- Detonation wave is still generated at this region even for N=300M.
- Density and v_z profiles are converged in the range of N=75M - 300M.
 - Detonation will occur if N>300M.
- · Tidal detonation is true!

What makes the two portions different?

- The detonated portion precedes the undetonated portion.
- Generally, a leading part of a WD passes closer to an IMBH than a trailing part.
 - Closer parts are more compressed by the IMBH.
- All the parts preceding the detonated portion could be detonated.
 - $\cdot\,$ The expected mass is 0.37M $_{\odot}$.

Nucleosynthesis

- $\cdot\,$ The detonation wave leaves 20% ⁴He and 80% $^{56}\text{Ni}.$
- \cdot The detonated region has high density (>10⁶ gcm⁻³).
- $\cdot\,$ There are very small amounts of light elements, such as $^{28}\text{Si},\,^{32}\text{S},\,^{36}\text{Ar},\,^{40}\text{Ca},\,\text{and}\,\,^{44}\text{Ti}.$
- This WD TDE cannot be observed as Ca-rich transients, despite of the expectation of Sell et al. (2015), unfortunately.

Tidal double detonation

- The explosion mechanism is as follows.
 - A WD with a CO core and a He shell is tidally disrupted.
 - A shock wave generated in the He shell triggers a He detonation wave.
 - $\cdot\,$ The He detonation wave invades into the CO core.
 - · A CO detonation wave occurs.
- We name this explosion mechanism after the double detonation scenario in the context of type la supernovae.

Summary

- $\cdot\,$ We study tidal detonation of a WD by an IMBH.
- We should be careful of spurious heating in lowresolution SPH simulations.
- We show the tidal detonation can occurs true in high-resolution numerical simulations.
- We suggest tidal double detonation of a WD with a CO core and He shell.
- We will investigate ⁵⁶Ni mass, ejecta mass, and kinetic energy in various IMBH mass, WD mass, and pericenter distances.