中間質量ブラックホールによる 白色矮星の潮汐破壊と熱核爆発 WD TDE and explosion by IMBH Ataru Tanikawa (The University of Tokyo) High Energy Astrophysics 2018 The University of Tokyo Hongo, September 5th, 2018

- · Tanikawa et al. (2017, ApJ, 839, 81)
- · Tanikawa (2018, ApJ, 858, 26)
- · Tanikawa (2018, MNRAS, 475, L67)
- · Kawana et al. (2018, MNRAS, 477, 3449)

Tidal Disruption Event

- Tidal disruption of a star (e.g. main sequence stars) by a BH
 - Bright flare powered by accretion of the stellar debris
- Several ten candidates (Kommosa 2015)
 - TDEs of main sequence stars
 - Several candidates of WD TDEs (e.g. loka et al. 2016)

Tidal detonation

- Supersonic combustion induced by a tidal field of a BH
 - The WD is compressed in zdirection.
 - The compression induces a shock wave.
 - Bounce generates a pressure wave.
 - The pressure wave steepens into the shock wave.
 - The shock wave triggers a detonation wave.
 - The detonation wave synthesizes large amounts of ⁵⁶Ni.
 - The WD TDE can be powered by ⁵⁶Ni, similarly to SNe Ia.

Probe to search for

Intermediate mass black hole

- Tidal detonation requires a WD TDE.
- A WD can be tidally disrupted only by an IMBH.
 - swallowing a stellar-mass BH.
 - $\cdot\,$ swallowed by a massive BH.
- WD TDEs can illuminate only IMBHs.
- WD TDEs can be probes to search for IMBHs.

Previous and our studies

· Previous studies

- Demonstration of large amounts of ⁵⁶Ni yielded
- No convergence check about mass resolution
- No demonstration of shock generation
- \cdot Our studies
 - · Convergence check
 - Demonstration of shock generation

SPH simulation

- SPH simulation in the same way as in previous studies, but with higher-mass resolution
 - Massively-parallel 3D SPH simulation code
 - · Helmholtz EoS
 - Aprox13 nuclear reaction networks
 - · N >~ 10⁷

 Ni yielded by spurious heating due to low resolution, not by a shock wave

Spurious heating

- In small-N cases, the number of SPH particles is too few in zdirection.
 - Distant particles interact incorrectly.
- Velocity gradient is overestimated.
- Overestimated velocity gradient falsely switches on artificial viscosity.
- The artificial viscosity raises spurious heating and false nuclear reactions.
- Note that artificial viscosity is correct, but velocity gradient is wrong.

Switch 3D to 1D

- · 3D SPH simulation
 - 0.45M_☉ HeWD disrupted by 300M_☉ IMBH
 - \cdot N~3x10⁸ for the He WD
 - \cdot without nuclear reactions
- Extracting z-columns indicated by white crosses
 - 1D mesh simulation
 - · z-columns
 - \cdot with nuclear reactions

Results

Nucleosynthesis

- The detonation wave leaves 20% ⁴He and 80% ⁵⁶Ni.
 - The detonated region has high density (>10⁶ gcm⁻³).
- The total ⁵⁶Ni mass is about 0.3M_☉, comparable to SNela.

Variety of tidal detonation

Kawana et al. (2018, MNRAS, 447, 3449)

Double detonation

- One of explosion scenarios of SNela
 - Explosion process
 - In a Helium shell, Helium detonation is ignited by mass accretion onto a WD from its companion star.
 - The Helium detonation drives Carbon detonation.
 - Two types
 - Edge-lit type (Nomoto 1980; 1982; Woosley et al. 1980)
 - Converging-shock type (Livne 1990)

"Tidal" double detonation (TDD)

- · A new explosion mechanism
- Helium detonation is ignited by tidal force, not by mass accretion.
- Tidal detonation is triggered by a shock wave in a He shell of a CO WD.
 - If there is no He shell, tidal detonation may not occur, since Carbon is harder to be ignited than Helium.
- TDD raises probability of illuminating IMBHs as thermonuclear transients.

Initial conditions

3

 $1.5 2 z [10^7 cm]$

2.5 3

0.5

0

1.5

 $z [10^7 \text{ cm}]$

2.5

- 3

2

0.5

1

0

- \cdot 0.6M \odot CO WD (N~100 millions)
 - \cdot w/o He shell
 - w/ He shell (5 and 10% of total mass)
- · 300Mo IMBH
- · Parabolic orbit, $\beta = 5$

 10^{8}

Density [g cm⁻³]

 10^{6}

0

0.5

 Simulation method is the same as the above.

2

2.5 3

 $^{1.5}_{z \ [10^7 \ cm]}^{2}$

Results

Tanikawa (2018, MNRAS, 475, L67)

Future work

- Estimate of the event rate
- Radiative transfer calculation of WD TDEs
- WD mass function of TDEs
 - The same as that of single WDs?
 - Top-heavy mass function due to dynamical effects?

Summary

- We have studied tidal detonation of WDs.
- We should be careful of spurious heating in low-resolution SPH simulation (Tanikawa et al. 2017, ApJ, 839, 81).
- We have verified tidal detonation of WDs in the case of He WD with 0.45M⊙ in which large amount of ⁵⁶Ni (~0.3M⊙) is synthesized (Tanikawa 2018, ApJ, 858, 26).
- Helium shell helps tidal detonation (Tanikawa et al. 2018, MNRAS, 475, L67).
- We have investigated various tidal detonation (Kawana et al. 2018 MNRAS, 477, 3449).
- · WD TDEs can be a clue to search for IMBHs.

Adiabatic heating for tidal detonation

- Adiabatic compression is not sufficient for tidal detonation.
 - Density should be increased by 5 orders of magnitude, if temperature rises from 10⁶ K to 3x10⁸ K
 - Such orbits are impossible.

Shock compression is required.

Initial conditions

- · WD-IMBH systems
 - · 0.3 M \odot He WD (β =5, 500M \odot IMBH)
 - · 0.6 M \odot CO WD (β =5, 500M \odot IMBH)
 - · 1.2 M \odot ONeMg WD (β =3, 100M \odot IMBH)
- $\cdot~10^4$ 10^7 SPH particles (N) for a WD
- · The WDs have parabolic orbits.
- $\cdot\,$ The WDs and IMBHs have no spin.

Results

- Amounts of synthesized Fe group elements are not converged.
 - These amounts become smaller with N increasing
- SPH simulations fail to resolve WD structure in zdirection.

SPH

resolution

z [10⁹cm]

0.1

0.05

-0.05

-0.1

0.2

0.4

x [10⁹cm]

0.6

0.8

x [10⁹cm]

x [10⁹cm]

Comparison of 1D with 3D

Convergence check of 1D resolution

 Space resolution is changed by factors of 8.

 The evolution of density, zvelocity, and nuclear components is not changed as space resolution is changed.

Convergence check of 3D SPH resolution

Tidal force (BH gravity) in z-direction

SPH VS mesh

- The shock wave appears near the surface of the WD.
- SPH simulation cannot resolve such thin layer, even if the number of particles is 300 million.
- SPH simulation cannot follow the emergence of the shock wave.

Difference between

success and failure cases

 The detonated columns precedes the undetonated columns.

- A leading part of a WD passes closer to an IMBH than a trailing part.
- The leading part is more compressed, and easier to be detonated.
- \cdot The detonated mass is at least 0.32Mo, and at most 0.37Mo.

Interaction of z-columns

- Detonated z-columns do not interact with each other.
- The velocity of the WD:
 ~10¹⁰ cms⁻¹
- The velocity of detonation: ~10⁹ cms⁻¹

Detonation wave proceeding orbital plane

- In A- and C-directions, detonation does not proceed, since detonation occurs simultaneously.
- In D-direction, detonation does not proceed, since materials in D direction have been already detonated.
- $\cdot~$ In B-direction,
 - detonation does not proceed if detonation occurs from the materials.
 - · detonation procees if not.
- Si group elements would be synthesized in the materials in Bdirection, since detonation reaches when their density becomes low.

Fine structure

- Detonation occurs in a He shell.
 - Although mixing occurs, it does not affect TDD.
- We suppress nuclear reactions in a shock layer, using a flag in FLASH code.

Estimated luminosity

 WD TDEs will be observed as thermonuclear transients powered by radioactive decay of ⁵⁶Ni.

- · Similar to SNela
- The estimated luminosity is larger than accretion-powered luminosity of the WD TDEs by two orders of magnitude.
- Jet luminosity would be much more luminous than the thermonuclear luminosity, but should have very small opening angle.

Difference from SNe la

 Rapid light-curve evolution (~10 days) due to small ejecta mass (~ 0.6M₀)

 Large velocity shift due to orbital motion around IMBHs (~ 10⁴ km/s)

3D GR for WD TDE

Anninos et al. (2018)