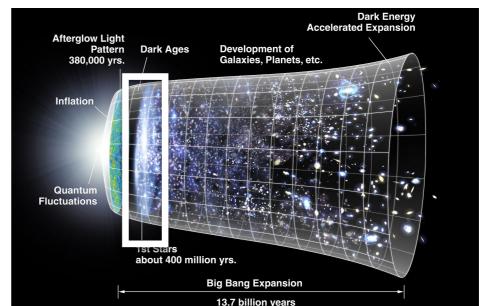
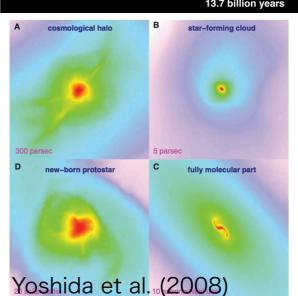
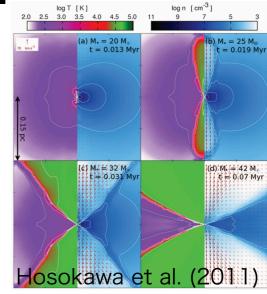
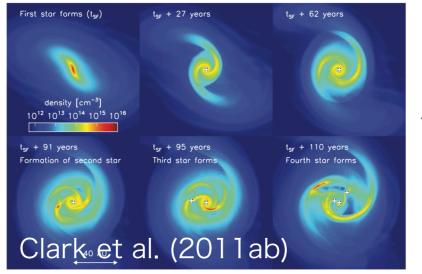
恒星間天体による初代星の 金属汚染に関する研究

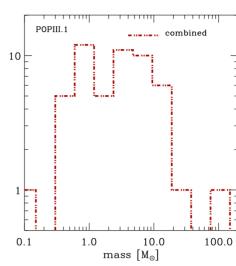
Ataru Tanikawa (The University of Tokyo)


Collaborators


Takeru K. Suzuki, Yasuo Doi (The University of Tokyo) Ibaraki University, November 20th, 2018

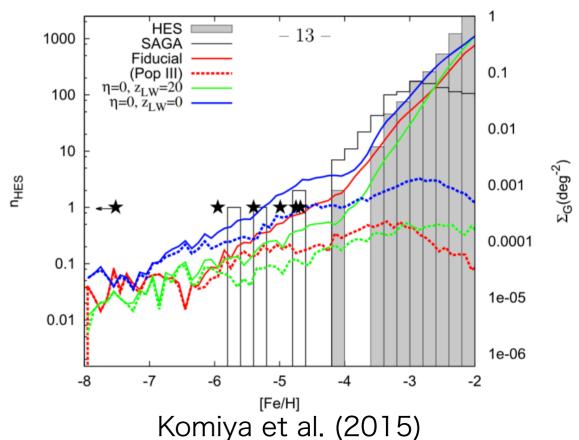

Tanikawa, Suzuki, Doi (2018, PASJ, 70, 80)

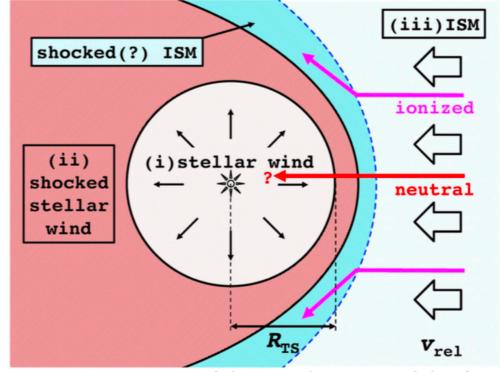

Pop. III stars


- · Importance
 - · Reionization
 - Nucleosynthesis
- · Mass
 - Massive stars (~100M_☉) formed in the typical mode
 - Low-mass stars (~0.8M_☉)
 (Nakamura, Umemura 01;
 Machida+ 08; Clark+ 11ab;
 Greif+ 11, 12; Machida, Doi 13;
 Susa+ 14; Chiaki+ 16)
- Low-mass stars (Pop. III survivors)
 - Long lifetime (~ 10Gyr)
 - Should-be observed in the Milky Way galaxy
- No discovery of metal-free stars

Metal pollution

· By ISM

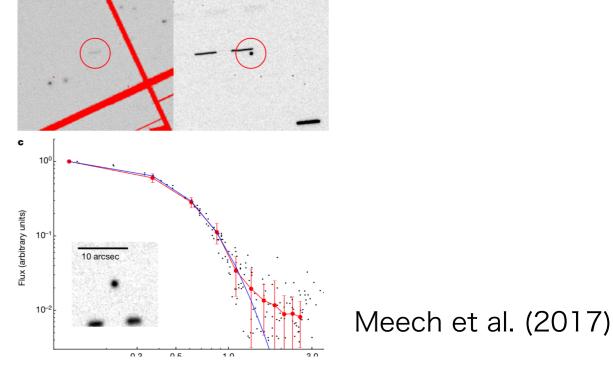

- Pop. III survivors have wandered in the MW for 10Gyr.
- They may have accreted ISM through Bondi-Hoyle-Lyttleton accretion.

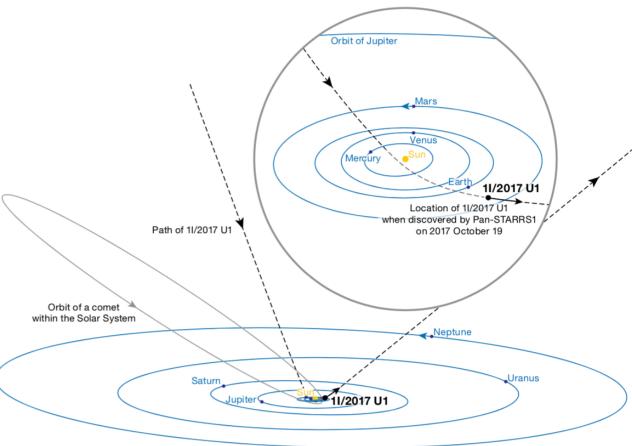

· ISM gas

- Blocked by stellar wind
- [Fe/H] ~ -14 (<< [Fe/H] of EMP stars)

· ISM dust

- · Sublimated by stellar radiation
- Also blocked by stellar wind



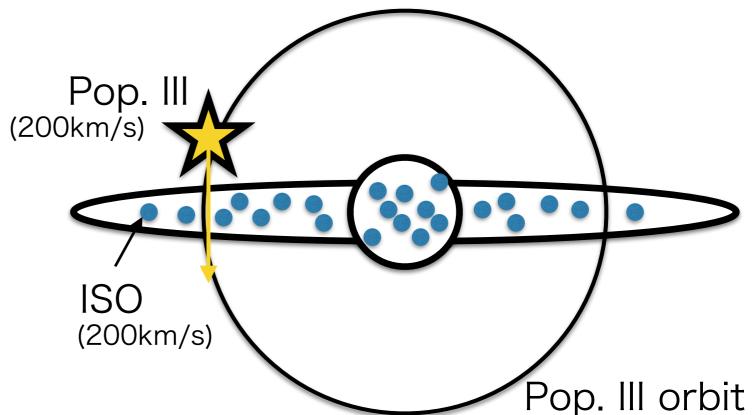


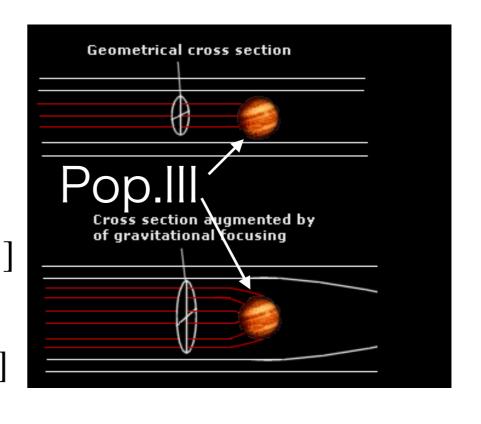
Tanaka et al. (2017), Suzuki (2018)

Interstellar objects (ISOs)

- The discovery of 11/2017
 U1 `Oumuamua
- The first ISO
- No hint of cometary activity (asteroid or comet nucleus)
- · Size ~ 100m
- High number density ~ 0.2
 au⁻³ (Do et al. 2018)
- Metal pollution of Pop. III through collision with ISOs

Collision rate


$$\dot{N}_{\rm coll} = fn\sigma v$$

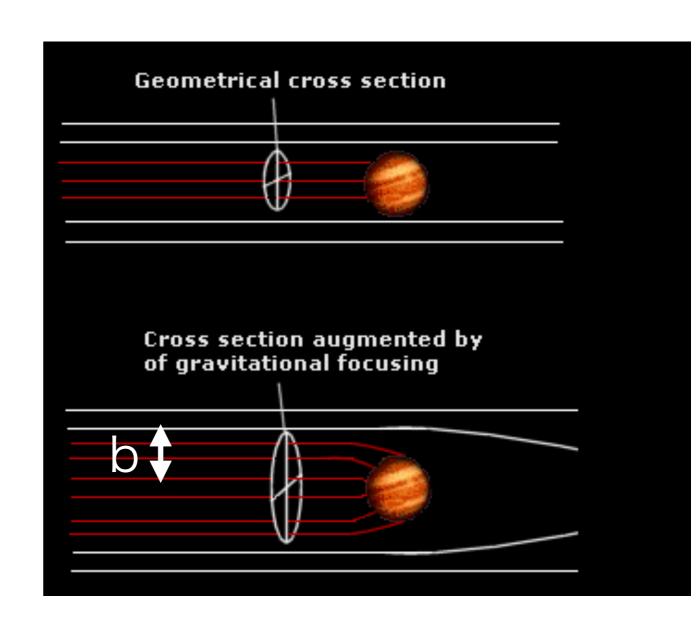

- f: fraction of ISO-rich regions in a Pop. III orbit
- n: ISO number density
- · σ : cross section
- v: relative velocity between Pop. III and ISOs

ISO
$$\dot{N}_{\text{coll,iso}} \sim 10^5 \left(\frac{n}{0.2 \text{au}^{-3}} \right) [\text{Gyr}^{-1}]$$

Pop. I stars
$$\dot{N}_{\text{coll,star}} \sim 10^{-11} \left(\frac{n}{0.1 \text{pc}^{-3}} \right) [\text{Gyr}^{-1}]$$

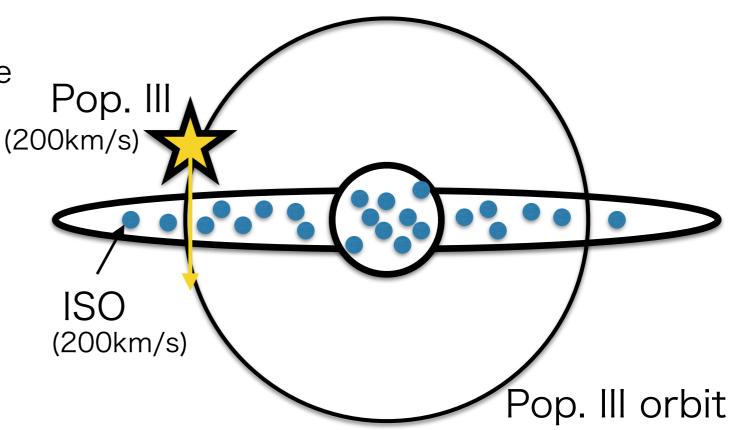
Free floating planets
$$\dot{N}_{\rm coll,ffp} \sim 10^{-8} \left(\frac{n}{200 {\rm pc}^{-3}}\right) [{\rm Gyr}^{-1}]$$

Cross section


$$\sigma = \pi r_*^2 \left(1 + \frac{2GM_*}{r_* v^2} \right)$$

- · r*: Pop. III radius
- · M*: Pop. III mass
- Derived from conservation law of energy and angular momentum

$$\sigma = \pi b^2$$


$$bv = r_* v_p$$

$$\frac{1}{2}v^2 = \frac{1}{2}v_p^2 - \frac{GM_*}{r_*}$$

Pop. III and ISO orbits

- \cdot f ~ 0.032 at R_g = 8kpc
 - · Disk thickness ~ 400pc
 - Orbital inclination ~ 30 degree
- $\cdot \, v \sim 310 \, kms^{-1}$
 - · circular velocity ~ 220kms⁻¹
 - · 2^{1/2} x circular velocity
- $\sigma \sim 7.6 \times 10^{22} \text{ cm}^2$
 - 4.9 x the solar cross section
 - M* = M_☉
 - $\cdot r^* = r_{\odot}$

ISO collision rate

$$N_{\text{acc}} \sim 1.4 \cdot 10^5 \left(\frac{n}{0.2 \text{ au}^{-3}} \right) [\text{Gyr}^{-1}]$$

 $\sim 1.4 \cdot 10^5 \left(\frac{n}{1.6 \cdot 10^{15} \text{ pc}^{-3}} \right) [\text{Gyr}^{-1}]$

- Star: $n_{star} \sim 0.1 \ pc^{-3} \cdots 8.8 \times 10^{-12} \ Gyr^{-1} \cdots no$ chance
- Free floating planet: $n_{ffp} \sim 200 \text{ pc}^{-3} \cdots 1.8 \times 10^{-8}$ Gyr⁻¹ ··· no chance

Tidal disruption

- The solar density is 1.4 g/cm³.
 - If ISOs are asteroids, they can survive at the solar surface, since their density is 3 g/cm³.
 - · If ISOs are comets, they will be tidally disrupted, since their density is 0.5 g/cm³.
 - However, they can plunge into the Sun because of the short times of the events (Brown et al. 2015).

Sublimation of ISOs

Distance to start sublimated
$$R = \left(\frac{L_*}{4\pi\sigma_{\rm s}T^4}\right) \sim 6.9 \cdot 10^{-2} \left(\frac{L_*}{L_\odot}\right)^{1/2} \left(\frac{T}{1500 \rm K}\right) \text{ [au]}$$

Velocity at the distance

$$v_{\rm R} = \left(v^2 + \frac{2GM_*}{R}\right) \sim 3.5 \cdot 10^2 \,[\text{km s}^{-1}]$$

Time to reach a Pop. III survivor

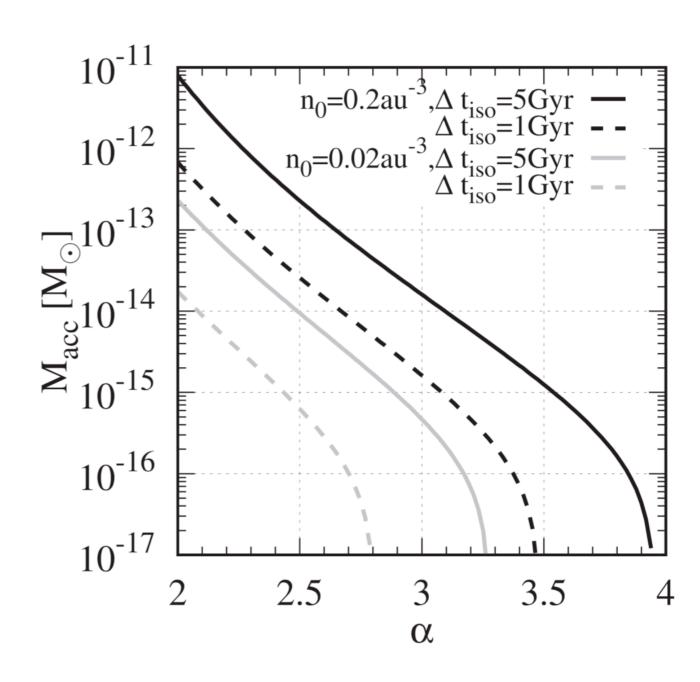
$$t_{\rm orbit} \sim 3.0 \cdot 10^4 \, [s]$$

Conduction time

$$t_{\rm cond} \sim \frac{D^2}{\kappa}$$
 (D: ISO size, κ : Thermal conductivity)

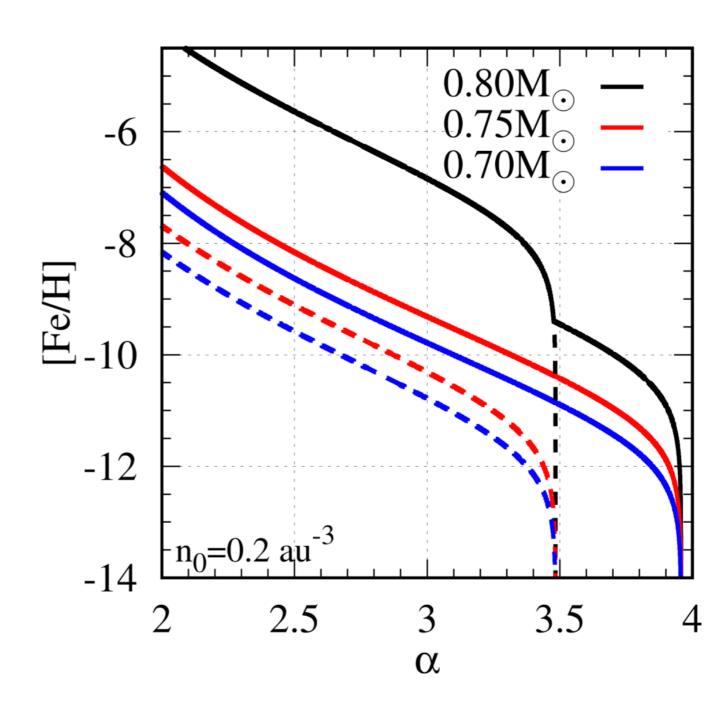
$$t_{\rm cond} > t_{\rm orbit}$$

$$t_{\rm cond} > t_{\rm orbit}$$
 $D_{\rm min} \sim 3.0 \left(\frac{\kappa}{3 \cdot 10^6 \, {\rm erg \, cm^{-1} \, K^{-1}}} \right)^{1/2} \, [{\rm km}]$


Cumulative size distribution of ISOs

$$n = n_0 \left(\frac{D}{D_0}\right)^{-\alpha}$$
 $(n_0 = 0.2 \text{ au}^{-3}, D_0 = 100 \text{ m})$

- The main belt: α ~1.5 for D>200m (Gladman et al. (2009)
- Long-period comet: α ~3 for 0.1-10km (Fernandez et al. 2012)
- The Edgeworth-Kuiper belt: α ~2.5-3.5 for 0.1-100km (Kenyon et al. 2004)


Accreting mass of ISOs

- Total accreting mass is 10⁻¹⁵-10⁻¹³M_☉ in the fiducial model.
- ISM accreting mass is 10⁻¹⁹M_☉,
 much smaller than ISO accreting mass.
- Even if ISO number density is smaller than estimated by an order of magnitude, ISO mass is much larger than ISM mass.
- ISOs are the most dominant polluter of Pop. III survivors.

Metallicity

- We assume the mass fraction of a surface convection zone as follows:
 - \cdot 0.80M $_{\odot}$: 10-6.0
 - $\cdot~0.75M_{\odot}:~10^{-2.5}$
 - \cdot 0.70M $_{\odot}$: 10-2.0
- Metallicity is comparable to EMP stars ([Fe/H] > -7) in the extreme case.
- Metallicity is less than EMP stars by several orders of magnitude in non-extreme cases.

Summary

- We have estimated metal pollution of Pop. III survivors by ISOs, or interstellar asteroids.
- We have found ISOs can be the most dominant polluters of Pop. III survivors.
- In the extreme case, Pop. III survivors could hide in EMP stars so far discovered.
- These results are published in Tanikawa, Suzuki, Doi (2018, PASJ, 70, 80)