Three-dimensional simulations of double detonations in double-degenerate systems for type Ia supernovae

Ataru Tanikawa (The University of Tokyo)

10th DTA symposium “Stellar deaths and their diversity”, NAOJ Mitaka, January 21st, 2019

Type Ia supernovae

- One of the brightest and most common objects in the universe
- A cosmic distance indicator
- The origin of iron peak elements
- Thermonuclear explosions of white dwarfs (WDs)
- Unknown progenitor
 - Single Degenerate (SD) or Double Degenerate (DD)
 - Near-Chandrasekhar mass (Near-Ch) or sub-Chandrasekhar (sub-Ch) mass

Seitenzahl et al. (2013)
Fink et al. (2010)
Constraints on the progenitors

- SD or DD
 - Non detection of RG in the pre-explosion image of SN2011fe (e.g. Li et al. 2011)
 - Non detection of MS in LMC SNR 0509-67.5 (e.g. Schaefer, Pagnotta 2012)
 - But see spin-up/down model.
- Near-Ch or sub-Ch
 - Both required (Hitomi Collaboration 2017)
 - Sub-Ch DD can be one of the progenitors

Li et al. (2011)

Hitomi Collaboration (2017)
Hypervelocity WDs

- The discovery of hypervelocity (~1000km/s) WDs (Shen et al. 2018)
- Double detonations in a DD system (Guillochon et al. 2010; Pakmor et al. 2013)
- So-called Dynamically-Driven Double-Degenerate Double-Detonation (D6) explosion
D6 processes

1. Lighter WD

2. He

3. Heavier WD

4. >1000 km/s

5. Converting shock

6. He detonation

7. >1000 km/s

8. Supernova ejecta of the Heavier WD

9. >1000 km/s

10. C detonation
This study

- We perform a SPH simulation of double detonations in a DD system.
- We explore signals of the progenitor model.
- We also investigate various combinations of WDs.
Method

- 3D SPH method
 - Parallelized by FDPS (Iwasawa, AT+ 2016)
 - Vectorized by SIMD (e.g. AT+ 2012; 2013)
- Helmholtz EoS (Timmes, Swesty 2000)
- Aprox13 nuclear reaction networks (Timmes et al. 2000)
Initial condition

- Mass combinations
 - 1.0M\text{sun} + 0.6M\text{sun} COWDs
 - w/o a He shell of the lighter WD
 - 1.0M\text{sun} COWD + 0.45M\text{sun} HeWD
 - Impossibly small separation
 - 1.0 \text{ Msun} + 0.9\text{Msun} COWDs
 - w/ a thick He shell of the lighter WD
- Hot spot in thick He outer shells
Animation

1.0 Msun + 0.6 Msun COWDs
Outcome explosion

- Nuclear energy: 1.35x10^51 erg
- 56Ni: ~0.6Msun
- Stripped mass from the lighter WD: ~0.003Msun
- Captured mass by the lighter WD: ~0.03Msun
SN ejecta

- Almost spherically symmetric shape
- An ejecta shadow formed by the lighter WD
- 56Ni, Si+S, O, and C from inside to outside
- Companion-origin stream stripped by the SN ejecta
Low-velocity oxygen

- The companion-origin stream consists of carbon and oxygen.
- It contributes to low-velocity components, a few 1000 km/s.
- The D6 explosion has low-velocity oxygen.
Velocity shift

- Radial velocities of O, Si, and 56Ni are systematically shifted by the orbital motion of the heavier WD.

- The velocity shift is about 1000km/s.

- This is not due to asymmetric explosion of double detonation.

- Double detonation shifts velocities of O+Si and Ni in the opposite directions.
Triple detonations (TD)
1.0 CO + 0.45 He WD
Quadruple detonations (QD)

1.0CO + 0.9CO Msun w/ thick He shell of the lighter WD
Chemical abundance

| Model | M_p | $M_{p,\text{sh}}$ | $M_{p,\text{He}}$ | M_c | $M_{c,\text{sh}}$ | $r_{\text{sep},i}$ | Exp. | M_{ej} | M_{56Ni} | M_{Si} | M_{O} | M_{cos} | E_{nuc} | E_{kin} |
|---------|--------|-------------------|--------------------|--------|-------------------|---------------------|------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| He45R09 | 1.0 | 0.05 | 0.03 | 0.45 | – | 2.9 | TD | 1.45 | 0.81 | 0.15 | 0.08 | – | 2.3 | 2.0 |
| He45 | 1.0 | 0.05 | 0.03 | 0.45 | – | 3.2 | D6 | 0.98 | 0.56 | 0.15 | 0.07 | 0.0033 | 1.4 | 1.1 |
| CO60He00| 1.0 | 0.05 | 0.03 | 0.60 | 0.000 | 2.5 | D6 | 0.97 | 0.55 | 0.15 | 0.07 | 0.0028 | 1.4 | 1.1 |
| CO60He06| 1.0 | 0.05 | 0.03 | 0.60 | 0.006 | 2.5 | D6 | 0.97 | 0.54 | 0.15 | 0.07 | 0.0029 | 1.3 | 1.1 |
| CO90He00| 1.0 | 0.10 | 0.05 | 0.90 | 0.000 | 1.6 | D6 | 0.93 | 0.51 | 0.14 | 0.06 | 0.0024 | 1.4 | 1.1 |
| CO90He09| 1.0 | 0.10 | 0.05 | 0.90 | 0.009 | 1.6 | D6 | 0.94 | 0.52 | 0.14 | 0.06 | 0.0033 | 1.4 | 1.1 |
| CO90He54| 1.0 | 0.10 | 0.05 | 0.90 | 0.054 | 1.6 | QD | 1.90 | 1.01 | 0.28 | 0.16 | – | 2.5 | 2.1 |

- Both TD and QD yield a large amount of 56Ni.
- Their feasibilities are unclear.
 - TD requires DD systems whose separation is impossibly small.
 - QD requires the lighter WD with thick He shells, ~0.06 Msun.
Summary

- We have performed a 3D simulation of the D6 model for type Ia supernova.

- CO materials are stripped by the SN ejecta, and compose low-velocity components.

- The SN ejecta have a velocity shift (~1000km/s) due to the binary motion of the progenitor system.

- We have demonstrated triple and quadruple detonations.