Three-dimensional simulations of double detonations in double-degenerate systems for type la supernovae Ataru Tanikawa (University of Tokyo) Collaborators:

Kenichi Nomoto, Naohito Nakasato, Keiichi Maeda

The Beginnings and Ends of Double White Dwarfs Copenhagen, July 4th 2019

Tanikawa, Nomoto, Nakasato (2018, ApJ, 868, 90) Tanikawa, Nomoto, Nakasato, Maeda (submitted)

Type la supernovae

- One of the brightest and most common objects in the universe
- · A cosmic distance indicator
 - The origin of iron peak elements
- Thermonuclear explosions of white dwarfs (WDs) in binary systems
 - Open questions

•

•

- Single Degenerate (SD) or Double Degenerate (DD)
- Near-Chandrasekhar mass (Near-Ch) or sub-Chandrasekhar (sub-Ch) mass

Seitenzahl et al. (2013)

Hypervelocity WDs

- Several hypervelocity WDs have been discovered from the Gaia's database (Shen+ 18).
- Their start points are NOT the Galactic center.
- One of them may start from a SNR.
- The D⁶ model is supported.

Previous and this studies

- Previous studies investigated a part of the D⁶ processes.
 - Guillochon+10 and Pakmor+13 does not follow the explosions of the heavier WDs.
 - Papish+15 followed the processes of interactions between the SN ejecta and companion WD.

 \cdot This study

- We reproduce the D⁶ explosion for SN Ia observations, and explore signatures of these explosions.
- We test another explosion mode.

Method

- 3D SPH method
 - Monaghan's artificial viscosity with Balsara switch (similar to GADGET)
 - · Parallelized by FDPS (Iwasawa, AT+ 2016)
 - · Vectorized by SIMD (e.g. AT+ 2012; 2013)
 - $\cdot\,$ The number of SPH particles is 4 millions per $0.1\,M_{\odot}.$
- · Helmholtz EoS (Timmes, Swesty 2000)
- Aprox13 nuclear reaction networks (Timmes et al. 2000)

Two initial conditions

- $\cdot~1.0M_{\odot}$ + 0.6M_{\odot} COWDs
 - $\cdot\,$ No He shell on the companion WD
 - \cdot D⁶ explosion
- $\cdot~1.0M_{\odot}$ + 0.9M_{\odot} COWDs
 - \cdot Thick He shell on the companion WD (~0.054M_)
 - Induced explosion of the companion WD
 - Quadruple Detonation (QD) explosion
- Two WDs so close that mass transfer occurs
- $\cdot\,$ He shells on the primary WDs
- · Hotspots in the He shells

The first DD system

Supernova ejecta

- \cdot $\,^{56}\text{Ni}$ mass is ~ 0.6 M_{\odot}
 - Mass of materials stripped from the companion WD is ~ 0.003 M_{\odot}
 - The stripped materials consist of carbon and oxygen.
- Supernova ejecta have a shadow (Papish et al. 2015).
- Supernova ejecta have a stream consisting of the stripped materials (companion-origin stream).

Low-velocity oxygen

- The companion-origin stream could be a key of D⁶ explosions.
- D⁶ explosions have low-velocity oxygen (~1000km/s) originating from the companion-origin stream.
- Such low-velocity oxygen can explain nebular-phase spectra of some of sub-luminous SNe la.
- We will investigate nebular phase spectra of D⁶ explosion by radiative transfer calculation in near fugure.

The QD explosion

Supernova ejecta

- Large ⁵⁶Ni mass, ~1.0M_☉
- Luminous SNe la?
 - Early emissions of luminous SNe la could result from Hedetonation products (Maeda et al. 2018).
 - Super-Chandrasekhar SNe la have massive CSMs (Yamanaka et al. 2016), which is inconsistent with DD systems.

Summary

- We have performed 3D simulations of doubledetonation explosions in DD systems.
- D⁶ explosions can contain materials stripped from companion WDs.
- The stripped materials can contribute to low-velocity oxygen (and carbon).
- Primary explosions can induce companion explosions, if the companions have thick He shells (QD explosions).
- · The QD explosion can yield large ^{56}Ni , ~ 1.0M $_{\odot}$.