Three-dimensional simulations of double detonation explosions in doubledegenerate systems for SNe Ia Ataru Tanikawa (谷川 衝, GuChuan Chong)¹ Collaborators:

Kenichi Nomoto¹, Naohito Nakasato², Keiichi Maeda³ ¹University of Tokyo, ²University of Aizu, ³Kyoto University

Progenitors of Type Ia Supernovae Lijiang, 8th August 2019 Tanikawa, Nomoto, Nakasato (2018, ApJ, 868, 90) Tanikawa, Nomoto, Nakasato, Maeda (submitted)

Type la supernovae

- One of the brightest and most common objects in the universe
- · A cosmic distance indicator
 - The origin of iron peak elements
- Thermonuclear explosions of white dwarfs (WDs) in binary systems
 - Open questions

•

•

•

- Single Degenerate (SD),
 Double Degenerate (DD), or
 Core Degenerate (CD)
 - Near-Chandrasekhar mass or sub-Chandrasekhar mass

Seitenzahl et al. (2013)

Hypervelocity WDs

- Several hypervelocity WDs have been discovered from the Gaia's database (Shen+ 18).
- Their start points are NOT the Galactic center.
- One of them may start from a SNR.
- The D⁶ model is supported.

D⁶ processes

 $M(\text{He}) \sim 0.001 M_{\odot}$

Previous and this studies

· Previous studies

- Follow mass transfer and He detonation (Guillochon et al. 2010; Pakmor et al. 2013).
- Follow interaction of SN ejecta with companion WDs (Papish et al. 2015).

· This study

- Follows simple nucleosynthesis of D⁶ explosions, and interaction of SN ejecta with companion WDs.
- Explore signals of D⁶ explosions to help SN la observations.

Method

- 3D SPH method
 - Monaghan's artificial viscosity with Balsara switch (similar to GADGET)
 - · Parallelized by FDPS (Iwasawa, AT+ 2016)
 - · Vectorized by SIMD (e.g. AT+ 2012; 2013)
 - $\cdot\,$ The number of SPH particles is 4 millions per $0.1\,M_{\odot}.$
- · Helmholtz EoS (Timmes, Swesty 2000)
- Aprox13 nuclear reaction networks (Timmes et al. 2000)

Initial conditions

Mass combinations

- \cdot 1.0M $_{\odot}$ COWD + 0.6M $_{\odot}$ COWD
- \cdot 1.0M_{\odot} COWD + 0.6M_{\odot} COWD
- $\cdot~$ 1.0M_{\odot} COWD + 0.45M_{\odot} HeWD
- The primary WDs have He shells $(0.05M_{\odot})$.
- The companion WD in the 2nd combination has a He shell.
- The companion WDs nearly fill their Roche lobe.
- Hotspots are in the He shell of the primary WDs.

$1.0M_{\odot}$ COWD + $0.6M_{\odot}$ COWD

Supernova ejecta

⁵⁶Ni mass: $\sim 0.6 M_{\odot}$

Stripped CO materials: $\sim 0.003 M_{\odot}$

- Stream structure (companionorigin stream)
- . Low-velocity ($\sim 10^3$ km/s) CO materials
- Dependence on companion WDs

. He WD: ~ few $\cdot 10^{-3} M_{\odot}$ He

. CO WD w/ He shell $(6 \cdot 10^{-3} M_{\odot})$: ~ few $\cdot 10^{-3} M_{\odot}$ He and ~ few $\cdot 10^{-4} M_{\odot}$ CO

Velocity shift

- Radial velocities of O, Si, and ⁵⁶Ni are systematically shifted by the orbital motion of the heavier WD.
- The velocity shift is about 1000km/s.
 - This is not due to asymmetric explosion of double detonation.
 - Double detonation shifts velocities of O+Si and Ni in the opposite directions.

Possible counterpart

· iPTF14atg

- · Early flash
 - \leftarrow He-detonation ash
- \cdot Oxygen emission in nebular phase
 - ← Stripped oxygen (but not confirmed)
- · Sub-luminous SN la
 - ← Primary COWD with $\sim 0.8 \text{ or } 0.9 M_{\odot}$
- But, D⁶ explosion could not explain early flash and spectral features at maximum luminosity consistently (Maeda et al. 2018).

Future work

Collaboration with G. Ferrand

Summary

- We reproduced D⁶ explosions by 3D numerical simulations.
- D⁶ explosions can contain materials stripped from companion WDs, and the stripped materials can contribute to low-velocity oxygen (and carbon).
- SN ejecta have velocity shift (~ 1000km/s) systematically for the same reason as hypervelocity WDs.
- iPTF14atg is a possible counterpart of D⁶ explosion.