Three dimensional simulations of D6 explosions for modeling type la supernovae

Ataru Tanikawa (The University of Tokyo, Japan) Collaborators:

Ken'ichi Nomoto, Naohito Nakasato, Keiichi Maeda

Komaba colloquium, 6th November 2019 AT, Nomoto, Nakasato (2018, ApJ, 868, 90) AT, Nomoto, Nakasato, Maeda (2019, ApJ, 885, 103)

SNe la

- One of the brightest transients
 - Spectra w/o H, and w/ Si
 - Standard candle
- Dominant origin of iron peak elements

Normal & Peculiar SNe la

· Normal la

•

•

- · Standard candle
- Dominant population (~50%)
- Peculiar SNe la
- · Sub-luminous la (e.g. 91bg-likes)
- · Type lax, or 02cx-like
- Over-luminous la (e.g. 91T-likes and 99aa-likes)
- · Super-Chandrasekhar la
- Discussion about the normal la

Progenitor models

- Thermonuclear explosions of Carbon-oxygen (CO) white dwarf (WD) in binary systems
 - Radioactivity of ⁵⁶Ni
 - Open questions

•

- Single Degenerate (SD),
 Double Degenerate (DD)
- Near-Chandrasekhar (Ch) mass or sub-Ch mass

 Near-Ch SD, near-Ch DD, sub-Ch SD, and sub-Ch DD

Seitenzahl et al. (2013)

Non-degenerate companion

- There are several problems in the near SD scenarios.
- · Nearby SNe la have
 - No companion stars (Li+2011; Schaefer+12)
 - No circumstellar matter (CSM) (Maugutti+12; 14)
 - No hydrogen stripped from companion stars (Shappee+ 13)
- Some SNe Ia indicate the presence of non-degenerate stars, but
 - PTF11kx could be over-luminous (Dilday+12).
 - \cdot iPTF14atg is sub-luminous (Cao+15).

Near-Ch DD scenario

- · Delayed detonation, but ···
- · Evolution of the near-Ch DD system
 - · WD-WD merger
 - · Merger remnant
 - · Cold core (originally the heavier WD)
 - · Debris (originally the lighter WD)
 - Rapid accretion of the debris due to magnetic viscosity
 - Ignition of slow (not explosive) C+C reactions
 - Conversion of the merger remnant from CO to ONeMg
 - · Gravitational collapse to NS/BH
- A WD-WD merger ends with gravitational collapse unless some mechanism works before they completely merge.

Schwab et al. (2012)

Nomoto, Kondo (1991)

Sub-Ch DD Scenarios

 10^{9}

 10^{8}

Multiple origins?

- Not all SNe Ia may be explained by the sub-Ch DD scenarios.
- Nucleosynthesis of the sub-Ch DD scenarios may not be consistent with abundance pattern of iron peak elements in SNR 3C 397.
- The abundance pattern of iron peak elements in the Perseus cluster needs both of the near-Ch and sub-Ch scenarios.
- SNe Ia may have multiple origins of near-Ch and sub-Ch mass WD.

Short summary

- The sub-Ch DD scenarios
 - Nearby SNe Ia do not indicate the presence of nondegenerate companions.
 - The near-Ch DD scenario may not work well in theory.
- Combination of the sub-Ch DD and near-Ch SD scenarios
 - The abundance pattern of iron peak elements needs both the near- and sub-Ch mass explosions.
 - The SD scenarios are not necessarily ruled out for all the SNe Ia.
- · We assess whether the sub-Ch DD scenario can be promising.

D6 model

- Technical terms
- \cdot The D6 processes
- · D6 Observations

Technical terms

- · The D6 process
 - Double detonation model
 - · Detonation
 - · Conversing shock mechanism

Detonation

- Supersonic combustion wave
- · Process
 - · Shock heating
 - · Exothermic reactions
 - Fluid expansion due to the reactions
- \cdot Initiation
 - · Hot spot
 - · Preexisting or external shock
 - Deflagration-to-detonation transition

Conversing shock mechanism

- A shock wave surrounds a star for some reason.
- The shock wave converges at the center of the star.
- The shock wave strongly raises temperature.
- At the converging point, a hot spot emerges, and detonation stars from the hot spot.

Double detonation model

- Consider CO WD with He outer shell.
- · He detonation starts.
- \cdot The detonation
 - \cdot Propagates in the He shell.
 - Cannot invade into the CO core, but sends a shock wave separated from the detonation.
- A conversing shock wave appears when the He detonation surrounds the CO core.
- The conversing shock wave ignites C detonation.

Fink et al. (2010)

Hypervelocity WDs

- Several hypervelocity WDs (>1000km/s) have been discovered from the Gaia's database (Shen+ 18).
- Their start points are NOT the Galactic center.
 - One of them may start from a SNR.
- · The D6 model is supported.
- Hypervelocity WDs are also formed from SNe lax (e.g. Raddi et al. 2019)

Our study

- The D6 model could be promising.
- However, it is unclear whether the hypervelocity WDs are products of normal la, or peculiar la.
- We reproduce D6 explosions, and investigate their features to assess whether they are consistent with normal la or peculiar la.
- We perform two simulations.
 - In the first case, the system experiences D6 explosion as predicted.
 - In the second case, the system indicates another explosion mode.

Simulation method

3D SPH method

- Monaghan's artificial viscosity with Balsara switch (similar to GADGET)
- · Parallelized by FDPS (Iwasawa, AT+ 2016)
- · Vectorized by SIMD (e.g. AT+ 2012; 2013)
- $\cdot\,$ The number of SPH particles is 4 millions per $0.1\,M_{\odot}$
- · Helmholtz EoS (Timmes, Swesty 2000)
- Aprox13 nuclear reaction networks (Timmes et al. 2000)

Initial conditions

The first case

- . $1.0M_{\odot}$ COWD + $0.6M_{\odot}$ COWD
- $\cdot\,$ He outer shell on the heavier WD
- $\cdot\,$ No He outer shell on the lighter WD
- The second case
 - . $1.0M_{\odot}$ COWD + $0.9M_{\odot}$ COWD
 - He outer shells on the heavier WD
 - Massive He outer shell on the lighter WD

The first case

Tanikawa et al. (2018)

Supernova ejecta

- \cdot $\,^{56}\text{Ni}$ mass is ~ 0.6 M_{\odot}
 - Supernova ejecta have a shadow (Papish et al. 2015).
- $\cdot\,$ Mass of materials stripped from the lighter WD is ~ 0.003 M_{\odot}
 - The stripped materials consist of carbon and oxygen.
- Supernova ejecta have a stream consisting of the stripped materials (companion-origin stream).

Low-velocity oxygen

- The companion-origin stream could be a key to identify D6 explosions.
- D6 explosions have low-velocity oxygen (~1000km/s) originating from the companion-origin stream.
- Such low-velocity oxygen can explain nebular-phase spectra of some of sub-luminous SNe Ia.
- We will investigate nebular phase spectra of D6 explosion by radiative transfer calculation in near future.

The second case

Chemical abundance

- ⁵⁶Ni mass is ~1.0Msun.
- · SN ejecta have nested structure.

Luminous SNe la?

- QD explosions have early emissions because of He detonation products.
- The colors of the early emissions may be consistent with those of Luminous SNe Ia, such as SN1991T and SN1999aa (Maeda et al. 2018).
- The colors of early emissions through interactions with nondegenerate companions and CSMs may be too blue (Hosseinzadeh et al. 2017; Maeda et al. 2018).
 - Super-Chandrasekhar SNe la cannot be explained by QD explosions, since they have massive CSMs (Yamanaka et al. 2016).

Summary

- $\cdot\,$ SNe Ia can need the near-Ch SD and sub-Ch DD scenarios.
- We have assessed one of sub-Ch DD scenarios, the D6 model.
- The D6 model indicates several asymmetric features, such as the ejecta shadow, and companion-origin stream.
- The companion-origin stream can contribute to oxygen emissions in nebular phase spectra found in peculiar la.
- We will compare these asymmetric features with observations by detail calculations in the near future.

Backup slides

Double detonation

mechanism

- Accreting He materials
- He detonation on the surface of a CO core
- Invasion of a converging shock wave into the CO core
- Ignition of CO detonation

Fink et al. (2010)

Double detonation

The sub-Ch SD model

- · Accreting He materials
- He detonation on the surface of a CO core
- Invasion of a converging shock wave into the CO core
- · Ignition of CO detonation
- · Problem
 - . Large He shell mass ($\sim 0.1 M_{\odot}$)
 - Featureless spectra due to radioactive nuclei yielded by He detonation

8000

7000

9000

3000

4000

5000

6000

wavelength (angstroms)

D⁶ feasibility

. Requisite: $M_{\rm He} \lesssim 0.05 M_{\odot}$

- He detonation ashes make spectra featureless due to their opacity (e.g. Woosley, Kasen 2011)
- $\cdot~$ He detonation feasible for $M_{\rm He} \sim 0.01 M_{\odot}$
 - Hydrodynamical effects due to unstable mass transfer
 - C/O pollution (Shen, Moore 2014)
- Successful CO detonation unpublished

Pakmor et al. (2013)

Constraints on the progenitors

$\cdot\,$ SD or DD

- Non detection of RG in the preexplosion image of SN2011fe (e.g. Li et al. 2011)
- Non detection of MS in LMC SNR 0509-67.5 (e.g. Schaefer, Pagnotta 2012)
- · But see spin-up/down model.
- · Near-Ch or sub-Ch
 - Both required (Hitomi Collaboration 2017)
- · Sub-Ch DD can be one of the progenitors

Li et al. (2011)

He detonation

C detonation

1.5

Hotspot for He detonation

Hotspot for C detonation

Unburned materials

Figure 10. Colormap of temperature in a YZ (equatorial) slice, showing the core detonation of model B₆ in Table 1 at times $t = 1.10, 1.22, 1.42, 1.62, 1.72, and 2.03 s, respectively. The box size is <math>[-5:5] \times 10^3$ km in all directions.

Garcia-Senz et al. (2018)

Velocity shift

- Radial velocities of O, Si, and ⁵⁶Ni are systematically shifted by the orbital motion of the heavier WD.
- The velocity shift is about 1000km/s.
- This is not due to asymmetric explosion of double detonation.
 - Double detonation shifts velocities of O+Si and Ni in the opposite directions.

Possible counterpart

· iPTF14atg

- · Early flash
 - $\leftarrow \text{He-detonation ash}$
- Oxygen emission in nebular phase
 - ← Stripped oxygen (but not confirmed)
- · Sub-luminous SN la
 - ← Primary COWD with $\sim 0.8 \text{ or } 0.9 M_{\odot}$
- But, D⁶ explosion could not explain early flash and spectral features at maximum luminosity consistently (Maeda et al. 2018).

He shell on the companion

Comparison among sub-Chandrasekhar explosions in DD systems

	D6	Violent merger	Collision	spiral instability
Oxygen emission lines	\checkmark	\checkmark	×	×
Velocity shift (~1000km/s)	\checkmark	×	×	×
Two ⁵⁶ Ni components	×	×	\checkmark	×
Surface radio activity	√?	×	×	×

Supernova ejecta

- \cdot $\,^{56}\text{Ni}$ mass is ~ 0.6 M_{\odot}
 - Mass of materials stripped from the companion WD is ~ 0.003 M_{\odot}
 - The stripped materials consist of carbon and oxygen.
- Supernova ejecta have a shadow (Papish et al. 2015).
- Supernova ejecta have a stream consisting of the stripped materials (companion-origin stream).

Chemical abundance

Model	$M_{\rm p}$	$M_{\rm p,sh}$	$M_{\rm p,He}$	$M_{\rm c}$	$M_{\rm c,sh}$	$r_{\rm sep,i}$	Exp.	$M_{\rm ej}$	$M_{\rm ^{56}Ni}$	$M_{\rm Si}$	Mo	$M_{\rm cos}$	$E_{\rm nuc}$	$E_{\rm kin}$
	$[M_{\odot}]$	$[M_{\odot}]$	$[M_{\odot}]$	$[M_{\odot}]$	$[M_{\odot}]$	[km]		$[M_{\odot}]$	$[M_{\odot}]$	$[M_{\odot}]$	$[M_{\odot}]$	$[M_{\odot}]$	[Foe]	[Foe]
He45R09	1.0	0.05	0.03	0.45	—	2.9	TD	1.45	0.81	0.15	0.08	—	2.3	2.0
He45	1.0	0.05	0.03	0.45	_	3.2	D^6	0.98	0.56	0.15	0.07	0.0033	1.4	1.1
$\rm CO60 He00$	1.0	0.05	0.03	0.60	0.000	2.5	D^6	0.97	0.55	0.15	0.07	0.0028	1.4	1.1
$\rm CO60He06$	1.0	0.05	0.03	0.60	0.006	2.5	D^6	0.97	0.54	0.15	0.07	0.0029	1.3	1.1
$\rm CO90 He00$	1.0	0.10	0.05	0.90	0.000	1.6	D^6	0.93	0.51	0.14	0.06	0.0024	1.4	1.1
CO90He09	1.0	0.10	0.05	0.90	0.009	1.6	D^6	0.94	0.52	0.14	0.06	0.0033	1.4	1.1
CO90He54	1.0	0.10	0.05	0.90	0.054	1.6	QD	1.90	1.01	0.28	0.16	_	2.5	2.1

- Both TD and QD yield a large amount of 56Ni.
- Their feasibilities are unclear.
 - TD requires DD systems whose separation is impossibly small.
 - QD requires the lighter WD with thick He shells, ~0.06 Msun.