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Abstract
• A white dwarf (WD) may experience thermonuclear 
explosion in a TDE (tidal detonation). 

• Numerical simulation of tidal detonation is much 
more difficult than thought usually. 

• Careless simulation leads to incorrect tidal 
detonation due to numerically artificial heating. 

• We will show WD explosion triggered by physical 
heating.
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Tidal detonation
• The WD is compressed in z-
direction. 

• The compression induces a 
shock wave (nozzle shock). 

• The shock wave triggers a 
detonation wave (tidal 
detonation). 

• The detonation wave 
synthesizes 56Ni. 

• The WD TDE can be 
powered by 56Ni, similarly to 
SNe Ia.
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Adiabatic heating
• Adiabatic compression cannot 
ignite tidal detonation. 

• A He WD (light WD) needs more 
than   times compression for 
tidal detonation. 

• But, even the deepest 
penetration ( ) achieves only 

  times compression. 

• CO and ONe WDs (heavy WDs) 
are much less compressed than 
He WDs.
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Shock heating
• Nozzle shock emerges 

• After bounce for typical WD TDE 
( ). 

• Near the surface of a WD. 

• A detonation wave is also generated 
near the surface after bounce.
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Shock heating
• Nozzle shock emerges 

• After bounce for typical WD TDE 
( ). 

• Near the surface of a WD. 

• A detonation wave is also generated 
near the surface after bounce.

β ≲ 10

Brassart et al. (2008)

β = 7

z

xy-plane

WD surface

Shock & Detonation

Orbital direction

Bounce point

The first passage at the pericenter



Difficulty of WD TDE simulation
• No convergence of 
nucleosynthesis 

• Overheating in the lower-
resolution case due to 
numerically artificial heating 

• Underheating in the higher-
resolution case due to 
missing of shock 
generation 

• The highest resolution 
among any studies for WD 
TDE SPH simulation

Tanikawa et al. (2017, ApJ, 839, 81)
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Switch 3D to 1D
• 3D SPH simulation with high 
resolution enough to 
suppress overheating 

• 0.45M⦿ HeWD disrupted 
by 300M⦿ IMBH 

• N~3x108 for the He WD 

• Extracting z-columns 
indicated by white crosses 

• 1D mesh simulation 

• z-columns 

• with nuclear reactions
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Tanikawa (2018, ApJ, 858, 26)
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1D Results
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Nucleosynthesis

• The detonation wave leaves 20% 4He and 80% 56Ni. 
• There is no intermediate mass element (IME) such as Ca. 
• The detonated region has high density (>106 gcm-3).



The important points
• Tidal detonation is 
triggered by a shock wave. 

• The detonation starts after 
bounce near the surface. 

• The detonation wave also 
incinerates the central 
region.
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2D simulation
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Edge-on view of the slice
• FLASH 

• Helmholtz EoS 

• Aprox13 

• Mesh size   

• “Outflow” boundary condition 
at the s-edges and the upper 
z-edge. 

• “Reflect” boundary condition 
at the lower z-edge. 

• Oakforest-PACS (massive 
Xeon Phi cluster)

2.5 ⋅ 105 [cm]
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Ignition of detonation

• A detonation starts at an off-center region. 
• This is consistent with 1D simulation.



Propagation of detonation
• Detonation incinerates not 
only materials in the z-
direction, but also materials 
in the orbital plane.



Nucleosynthesis
• In the leading part, only 
56Ni is yielded, the same as 
the 1D framework. 

• IMEs are yielded in the 
trailing part. 

• The trailing part receives 
detonation when their 
density becomes low 
( ).≲ 106gcm−3
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Comparison with 
3D mesh simulation (1)

• The starting point of the 
detonation is different. 

• The ignition process is 
unclear in Anninos’s 
simulation (Anninos et al. 
2018; 2019) 

• The situation is extremely 
hard for mesh simulation, 
since kinetic energy is much 
larger than internal energy.

The orbital direction

The starting point

Anninos et al. (2018)
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Comparison with 
3D mesh simulation (2)

• Our simulation 

• 56Ni is first yielded, and 
next IMEs 

• Anninos’s simulation 

• IMEs are first yielded, and 
next 56Ni. 

• IMEs are converted into 
56Ni. 

• Anninos’s simulation may 
underestimate IME mass.

Anninos et al. (2018)



Summary
• Careless simulation of a WD TDE 
leads to numerically artificial 
detonation. 

• If detonation is physically ignited, 

• It starts from the surface after 
the bounce. 

• 56Ni is first yielded, and IMEs 
are next. 

• Recent 3D mesh simulations are 
not consistent with the above 
results. 

• We should fix this discrepancy to 
predict observations of WD TDEs.
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