High-resolution numerical studies for tidal detonation of a white dwarf

Ataru Tanikawa (The University of Tokyo, Japan)

Tidal Disruptions in Kyoto: Confronting Theory with Observations YITP, Kyoto, Japan, 16th Jan. 2020

Abstract

- A white dwarf (WD) may experience thermonuclear explosion in a TDE (tidal detonation).
- Numerical simulation of tidal detonation is much more difficult than thought usually.
- Careless simulation leads to incorrect tidal detonation due to numerically artificial heating.
- We will show WD explosion triggered by physical heating.

Contents

- · Fundamentals of tidal detonation
- Tidal detonation in 1D simulation
- Tidal detonation in 2D simulation

Contents

- · Fundamentals of tidal detonation
- Tidal detonation in 1D simulation
- Tidal detonation in 2D simulation

Tidal detonation

- The WD is compressed in zdirection.
- The compression induces a shock wave (nozzle shock).
- The shock wave triggers a detonation wave (tidal detonation).
- The detonation wave synthesizes ⁵⁶Ni.
 - The WD TDE can be powered by ⁵⁶Ni, similarly to SNe Ia.

Adiabatic heating

- Adiabatic compression cannot ignite tidal detonation.
- $\cdot\,$ A He WD (light WD) needs more than $\,\sim\,10^4$ times compression for tidal detonation.
- · But, even the deepest penetration ($\beta \sim 20$) achieves only
 - $\sim 10^3$ times compression.
- CO and ONe WDs (heavy WDs) are much less compressed than He WDs.

Shock heating

Shock heating

Difficulty of WD TDE simulation

- No convergence of nucleosynthesis
- Overheating in the lowerresolution case due to numerically artificial heating
- Underheating in the higherresolution case due to missing of shock generation
 - The highest resolution among any studies for WD TDE SPH simulation

Contents

- · Fundamentals of tidal detonation
- · Tidal detonation in 1D simulation
- Tidal detonation in 2D simulation

Switch 3D to 1D

- 3D SPH simulation with high resolution enough to suppress overheating
 - 0.45M_☉ HeWD disrupted by 300M_☉ IMBH
 - \cdot N~3x10⁸ for the He WD
- Extracting z-columns indicated by white crosses
 - 1D mesh simulation
 - · z-columns
- with nuclear reactions
 Tanikawa (2018, ApJ, 858, 26)

1D Results

Tanikawa (2018, ApJ, 858, 26)

Nucleosynthesis

- The detonation wave leaves 20% ⁴He and 80% ⁵⁶Ni.
- There is no intermediate mass element (IME) such as Ca.
- · The detonated region has high density (>10⁶ gcm⁻³).

The important points

- Tidal detonation is triggered by a shock wave.
- The detonation starts after bounce near the surface.
- The detonation wave also incinerates the central region.

Contents

- · Fundamentals of tidal detonation
- Tidal detonation in 1D simulation
- · Tidal detonation in 2D simulation

2D simulation

Edge-on view of the slice

· FLASH

- · Helmholtz EoS
- · Aprox13
- . Mesh size $2.5 \cdot 10^5$ [cm]
- "Outflow" boundary condition at the s-edges and the upper z-edge.
- "Reflect" boundary condition at the lower z-edge.
 - Oakforest-PACS (massive Xeon Phi cluster)

Ignition of detonation

- · A detonation starts at an off-center region.
- This is consistent with 1D simulation.

Propagation of detonation

Detonation incinerates not only materials in the zdirection, but also materials in the orbital plane.

Nucleosynthesis

- In the leading part, only
 ⁵⁶Ni is yielded, the same as the 1D framework.
- IMEs are yielded in the trailing part.
 - The trailing part receives detonation when their density becomes low $(\leq 10^6 {\rm g cm}^{-3}).$

Comparison with

3D mesh simulation (1)

 The starting point of the detonation is different.

 The ignition process is unclear in Anninos's simulation (Anninos et al. 2018; 2019)

 The situation is extremely hard for mesh simulation, since kinetic energy is much larger than internal energy.

Comparison with

3D mesh simulation (2)

Our simulation

- ⁵⁶Ni is first yielded, and next IMEs
- Anninos's simulation
 - IMEs are first yielded, and next ⁵⁶Ni.
 - IMEs are converted into ⁵⁶Ni.
- Anninos's simulation may underestimate IME mass.

Anninos et al. (2018)

Summary

- Careless simulation of a WD TDE leads to numerically artificial detonation.
- $\cdot\,$ If detonation is physically ignited,
 - It starts from the surface after the bounce.
 - ⁵⁶Ni is first yielded, and IMEs are next.
- Recent 3D mesh simulations are not consistent with the above results.
- We should fix this discrepancy to predict observations of WD TDEs.

