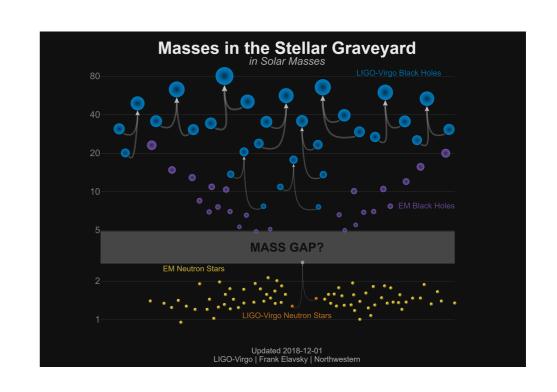
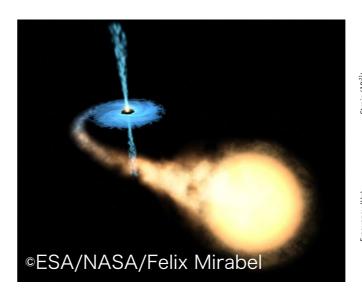
70太陽質量ブラックホールを含むとされる LB-1の力学的相互作用による形成率について

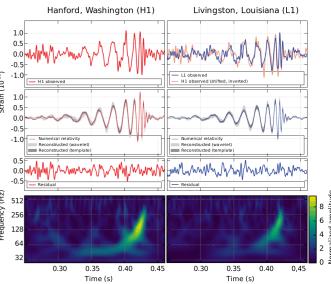
Ataru Tanikawa (University of Tokyo, Komaba)

Collaborators:

T. Kinugawa (UoT, ICRR),

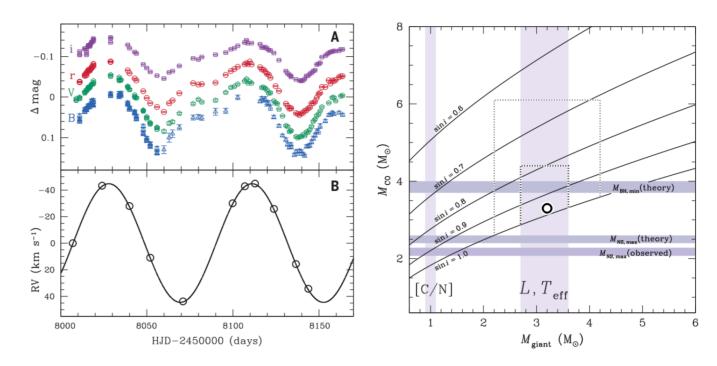

J. Kumamoto, M. S. Fujii (UoT, Dept. Astronomy)


Tanikawa et al. (2020, arXiv:2019.04509, PASJ accepted)


Colloquium, Dept. Astronomy, Koto University

Stellar-mass black hole (BH)

- A final state of massive stars
- X-ray binaries and merging BHs
- Not enough information
 - X-ray binaries are short-period binaries, P ≤ 1 day
 (Corral-Santana et al. 2016).
 - The origin of merging BHs are unknown.



GW150914 (Abbott et al. 2016)

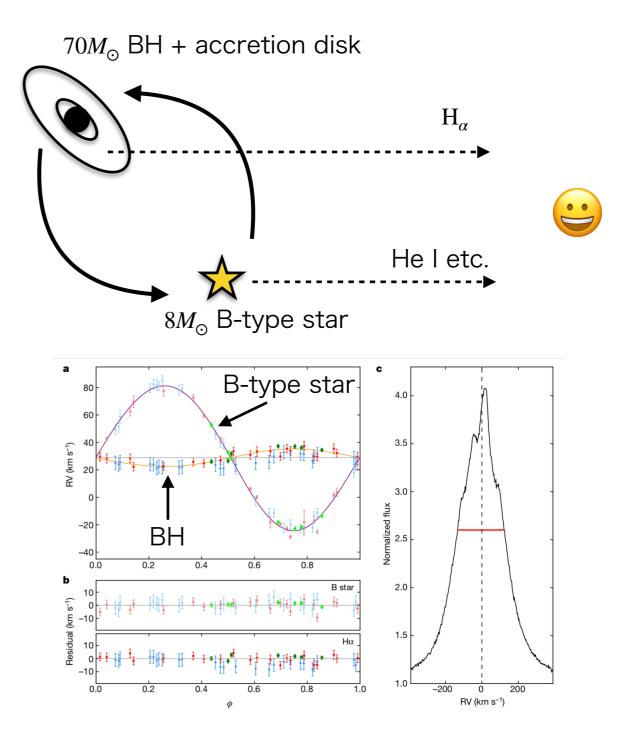
BHs in long-period binaries

- · Astrometry (Shikauchi san's talk)
- Spectroscopy
 - . AS 386: 131 days, $7M_{\odot}$ compact object (Khokhlov et al. 2018)
 - A detached binary in NGC 3201: 167 days, $4.36M_{\odot}$ compact object (Giesers et al. 2018)
 - \cdot 2MASS J05215658+4359220: 83days, $3.3M_{\odot}$ compact object (Thompson et al. 2019, Science 366, 637)

Thompson et al. (2019)

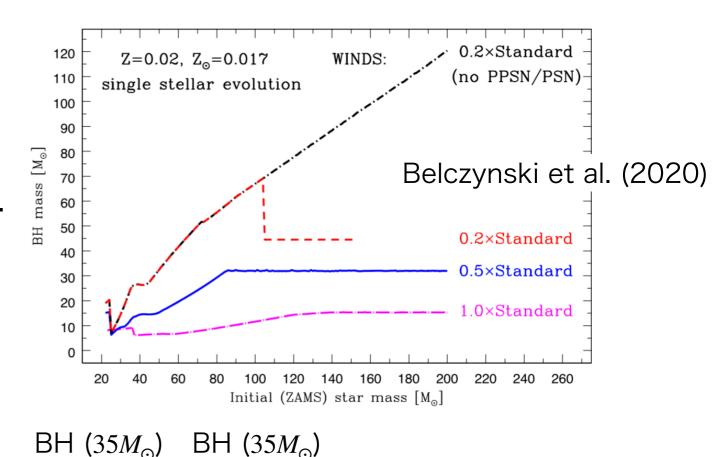
$$\frac{M_{\rm CO}^3 \sin^3 i_{\rm orb}}{(M_{\rm giant} + M_{\rm CO})^2} = \frac{K^3 P_{\rm orb}}{2\pi G} (1 - e^2)^{3/2} \sim 0.766 M_{\odot} \rightarrow M_{\rm CO} \gtrsim 2.9 M_{\odot}$$

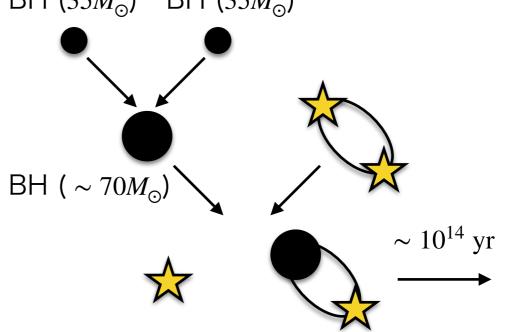
$$R_{\text{giant}} = v_{\text{spin}} P_{\text{spin}} / 2\pi \sim \frac{23 \pm 1R_{\odot}}{\sin i_{\text{spin}}} \left(\frac{v_{\text{spin}}}{14.1 \text{kms}^{-1}} \right) \left(\frac{P_{\text{spin}}}{82.2 \text{day}} \right)$$


$$M_{\text{giant}} = g_{\text{giant}} R_{\text{giant}}^2 / G \sim \frac{4.4_{-1.5}^{+2.2} M_{\odot}}{\sin^2 i_{\text{spin}}} \left(\frac{R_{\text{giant}}}{23R_{\odot}}\right)^2 \left(\frac{g}{10^{2.35} \text{cms}^{-2}}\right)$$

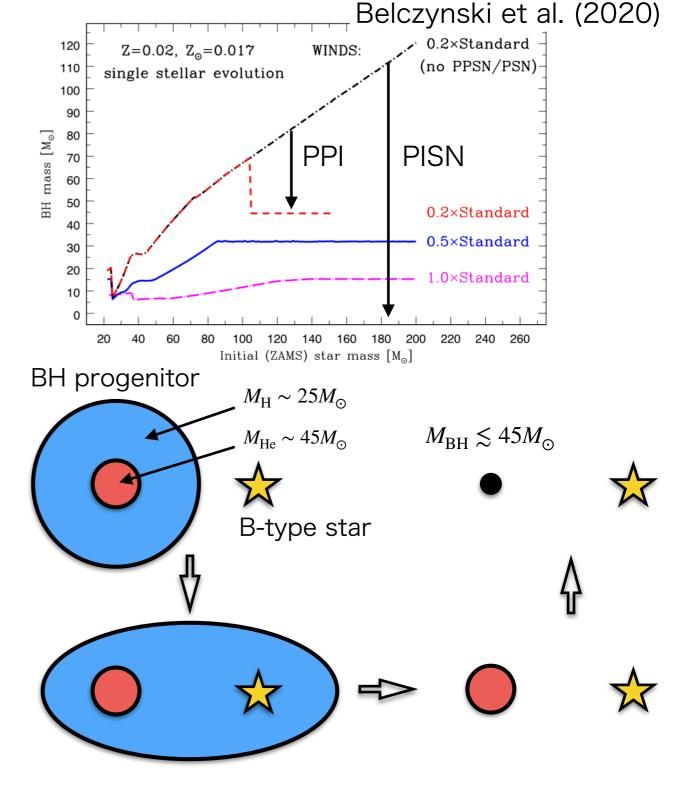
$$P_{\rm spin} \sim P_{\rm orb}, \, e \sim 0 \rightarrow i_{\rm spin} \sim i_{\rm orb} \sim i \, \, ({\rm synchronized})$$

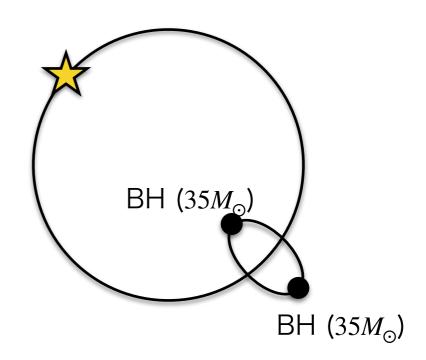
LB-1


- . $8M_{\odot}$ B-type star $70M_{\odot}$ BH
- . $a \sim 1$ au, $e \sim 0.03$, $Z \sim Z_{\odot}$
- · L, T, and g contrain B-type star mass.
- The ratio of radial velocity determines BH mass.


Liu et al. (2019, Nature, 575, 618)

What's surprising?

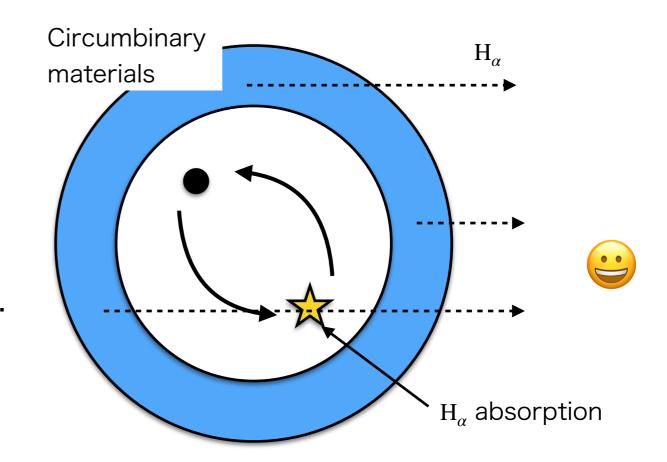

- . High metallicity ($Z \sim Z_{\odot}$)
 - Stellar wind mass loss reduces BH mass to $\lesssim 20 M_{\odot}$.
 - The mass loss rate should be 5 times smaller than previously thought.
- · Circular orbit ($e \sim 0.03$)
 - Circularization timescale ($\sim 10^{14} \ \rm yr)$ is much more than the Hubble time (Liu et al. 2019)

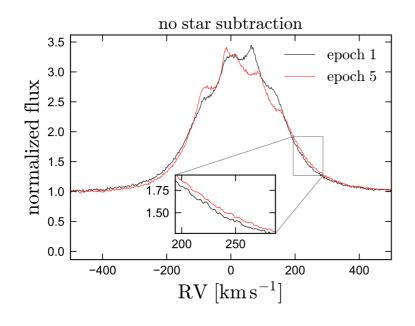

Reduced stellar wind

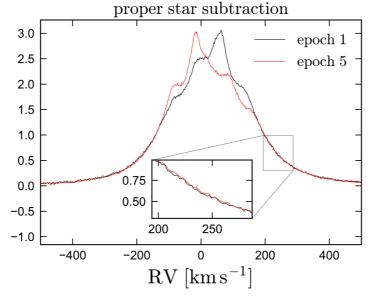
- . BH progenitors should have $M_{\rm tot} \gtrsim 70 M_{\odot}$ and $M_{\rm c,He} \lesssim 45 M_{\odot}$.
 - . BH progenitors with $M_{\rm c,He} \gtrsim 45 M_{\odot}$ reduce BH masses to $M_{\rm BH} \sim 45 M_{\odot}$ throught mass loss of pulsational pair instability (PPI).
 - . BH progenitors with $M_{\rm c,He}\gtrsim 65M_{\odot}$ leave no remnants due to pair instability (PI) supernovae (SNe).
 - · GW observation supports PPI/PISN (Abbott et al. 2019).
- . The binary size (a $\sim 1 \mathrm{au} \sim 200 R_{\odot}$)
 - . $a_i \lesssim 1$ au ··· Merge
 - . $a_i \gtrsim 1$ au ··· Common envelope
 - . Even if the binary survives, $M_{\rm BH} \lesssim 45 M_{\odot}$.
 - . $a_i \gg 1$ au ··· No interaction ($a \gg 1$ au)

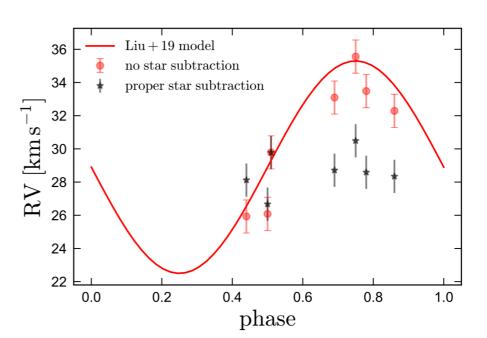
Is $70M_{\odot}$ BH single BH?

- The merger time through gravitational wave is $\sim 10^4 \, \mathrm{yr}$.
- The merger time is smaller than the lifetime of the Btype star by three order of magnitude.
- This probability is quite small.
- · (Shen et al. 2019)

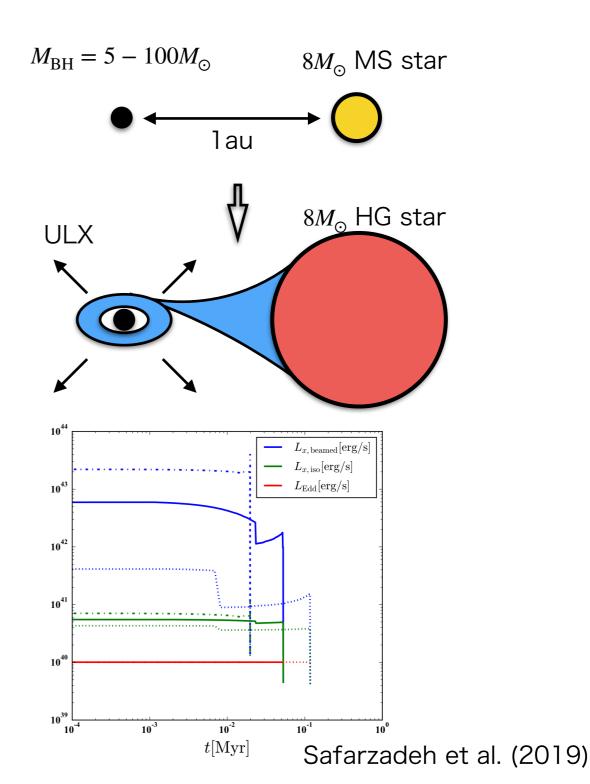



Possible scenarios

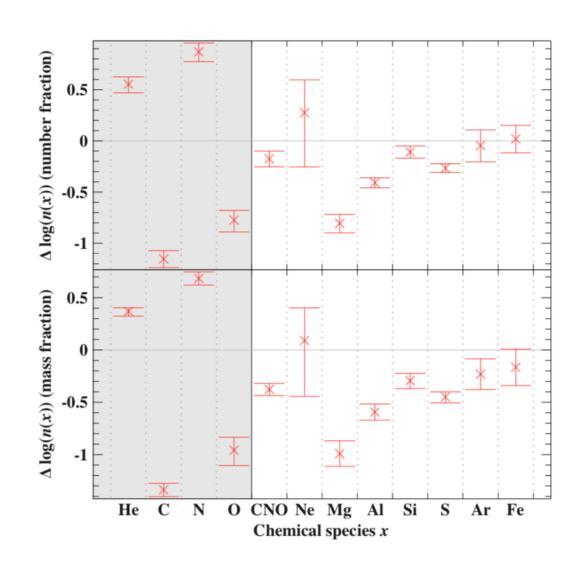

- Isolated environment
 - · Binary system
 - Hierarchical triple system
 - · Inner BH-BH
 - More complicating channels
- Dense stellar cluster
 - Capture of a B-type star by a BH
 - More complicating interactions


Counter opinions on " $70M_{\odot}$ " BH

- . No evidence that H_{α} is associated with the BH.
- Radial velocity variability disappears when H_{α} absorption by the B-type star is considered.
- . H_{α} may be associated with circumbinary materials.



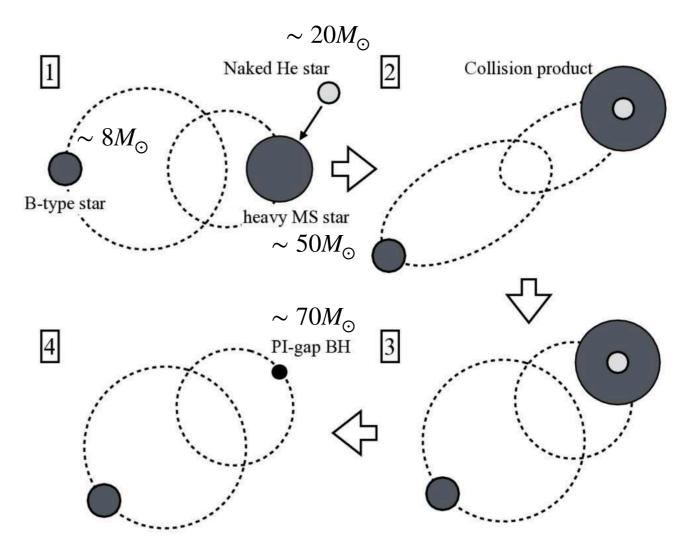
El-Badry, Quataert (2020; see also Abdul-Masih et al. 2019)


"Postgenitor" problem

- LB-1 system will evolve to a ultra-luminous X-ray (ULX) source in future.
 - Roche-lobe overflow will starts when the B-type star enters into a Hertzsprung Gap (HG) phase.
 - The HG star rapidly expands, and achieves a high accretion rate onto the BH.
- The number of ULXs inferred by LB-1 is larger than observed in the MW by an order of magnitude.

What is LB-1 in reality?

- The B-type star can be a stripped helium star with $\sim 1.1 M_{\odot}$ (Irrgang et al. 2019).
- The luminosity is consistent if the Gaia distance is adopted (Eldridge et al. 2019; Irrgang et al. 2019).
- The unseen companion can be a neutron star.


Our stance

- . The presence of the $70M_{\odot}$ BH may be doubtful.
- However, another theoretically-challenging binary may be reported in future.
- The usual meaning of the "theoreticallychallenging" is "challenging in the framework of isolated binary evolution".
- We use this opportunity to notice dynamical formation of a binary in DSCs, using LB-1 as a good example.

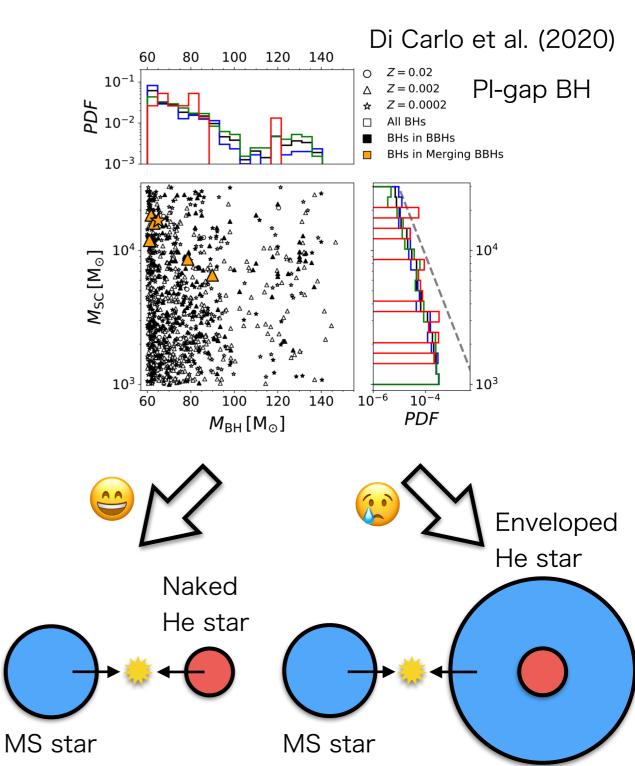
The most efficient process

- Collision of a naked He star with a MS star which has a B-type companion.
 - The He star must not have Hydrogen envelope.
- 2. The collision product and B-type companion form a binary system.
- 3. The binary system is circularized through dynamical tide of the collision product's envelope.
- 4. The collision product collapses to a $70M_{\odot}$ BH.
 - It can avoid PPI/PISN because of small He core.

In an open cluster of the MW galaxy

Collision rate

Formation rate of PI-gap BHs in OCs


$$\dot{N}_{\rm PIgap} \sim 2 \times 10^{-6} \left(\frac{f_{\rm PIgap}}{0.002} \right) \left(\frac{\rho_{\rm oc}}{10^4 M_{\odot} {\rm pc}^{-3}} \right) \left(\frac{\eta_{20}}{0.003 M_{\odot}^{-1}} \right) \left(\frac{f_{\rm oc}}{0.2} \right) \left(\frac{\dot{M}_{\rm mw}}{2 M_{\odot} {\rm yr}^{-1}} \right) \left[{\rm yr}^{-1} \right]$$

Formation path fraction

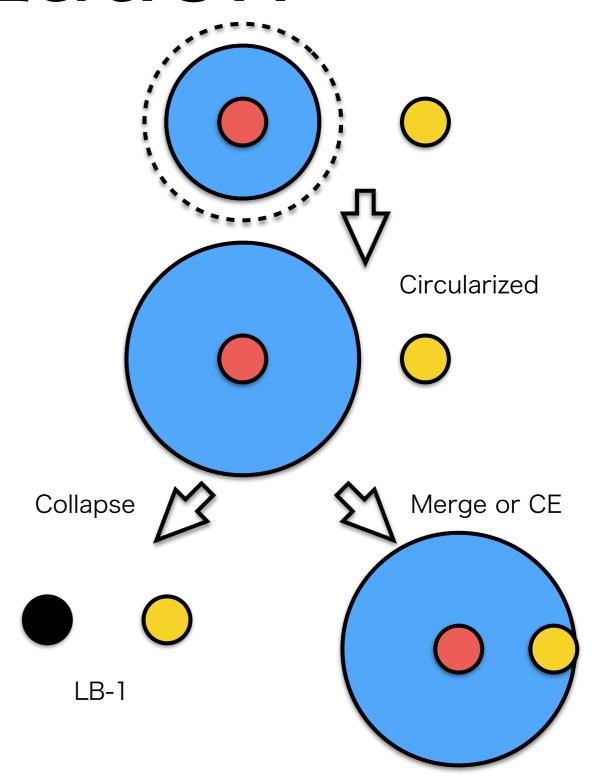
$$\cdot \frac{\Gamma_{\text{nHe}}}{\Gamma_{\text{eHe}}} \sim 10^{-2} \left(\frac{N_{1,\text{nHe}}/N_{1,\text{eHe}}}{2} \right) \left(\frac{M_{12,\text{nHe}}/M_{12,\text{eHe}}}{0.7} \right) \left(\frac{R_{12,\text{nHe}}/R_{12,\text{eHe}}}{0.01} \right)$$

Collision rate

$$\dot{N}_{\text{coll}} = \dot{N}_{\text{PIgap}} \frac{\Gamma_{\text{nHe}}}{\Gamma_{\text{eHe}}} P_{\text{b}} \sim 3 \times 10^{-9} \left(\frac{\dot{N}_{\text{PIgap}}}{2 \times 10^{-6} \text{ yr}^{-1}} \right) \left(\frac{\Gamma_{\text{nHe}} / \Gamma_{\text{eHe}}}{10^{-2}} \right) \left(\frac{P_{\text{b}}}{0.1} \right) \text{ [yr}^{-1} \text{]}$$

Circularization

- The binary is rapidly circularized through tidal interaction.
- If the collision product collapses to a BH before swallowing the B-type star, the binary becomes LB-1.
 - The collapse time is at random, since the naked He star wandered in an OC for a long time.
- Circularization time


$$t_{\rm cric} \sim 2 \times 10^4 \left(\frac{R_{\rm coll}}{100R_{\odot}}\right)^{-9} \text{ [yr]}$$

Kelvin-Helmholtz time (expansion time)

$$t_{\rm KH} \sim 2 \times 10^4 \left(\frac{M_{\rm coll}}{70 M_{\odot}}\right)^2 \left(\frac{R_{\rm coll}}{100 R_{\odot}}\right)^{-1} \left(\frac{L_{\rm coll}}{10^5 L_{\odot}}\right)^{-1} [\rm yr]$$

Surviving probability

$$P_{\text{surv}} = t_{\text{KH}} / t_{\text{coll,life,max}} \sim 0.1 \left(\frac{t_{\text{coll,life,max}}}{0.2 \text{Myr}} \right)^{-1}$$

The formation rate

· The number of LB-1-like systems in the MW

$$N_{\rm LB1} \sim 0.01 \left(\frac{\dot{N}_{\rm coll}}{3 \times 10^{-9} {\rm yr}^{-1}} \right) \left(\frac{P_{\rm surv}}{0.1} \right) \left(\frac{T_{\rm B}}{40 {\rm Myr}} \right)$$

No chance to form LB-1-like systems in OCs

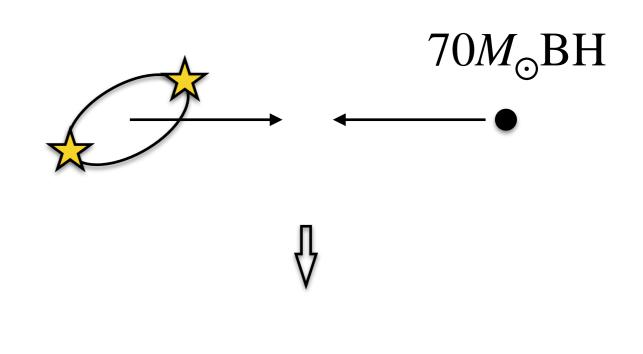
Possible scenarios

- Isolated environment
 - · Binary system
 - Hierarchical triple system
 - · Inner BH-BH
 - More complicating channels
- Dense stellar cluster
 - Capture of a B-type star by a BH
 - More complicating interactions

Other stellar collisions

- Collision of He stars with H envelope does not work.
 - · He star have $R \gg a$.
- Collision products of two MSs or two naked He stars cannot avoid PPI/PISN
- Collision rate of BH and other stars is lower than or similar to the above process.

	MS	He star	Naked He star	ВН
MS	PPI/ PISN			
He star	R>>a	R>>a		
Naked He star	Done	R>>a	PPI/ PISN	
вн	Similar rate	R>>a	Lower	Lower

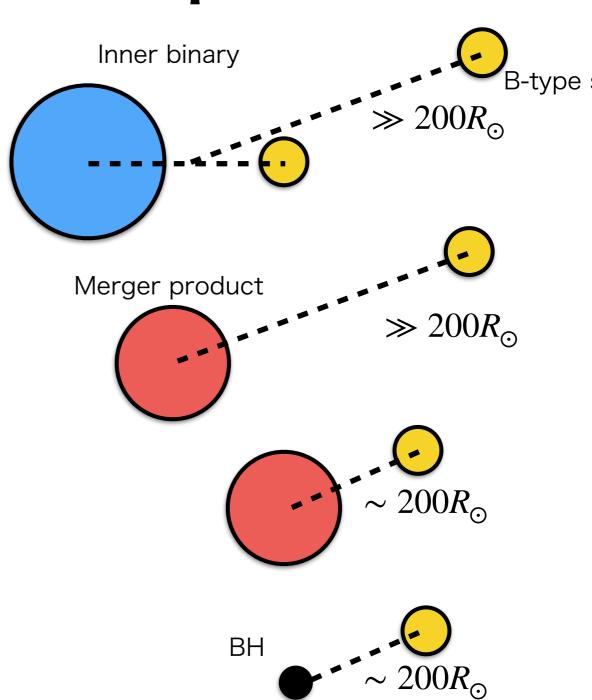

Capture processes

- At first, there is no circularization process
- · OC-origin:

$$N_{\rm b} \sim 0.7 \to N_{\rm b,cir} \sim 7 \times 10^{-4}$$

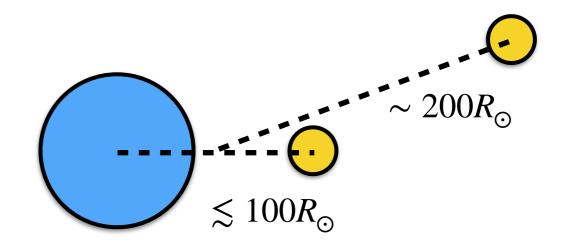
- GC-origin: No B-type star
- · Interstellar space-origin:

$$N_{\rm b} \sim 7 \times 10^{-8}$$

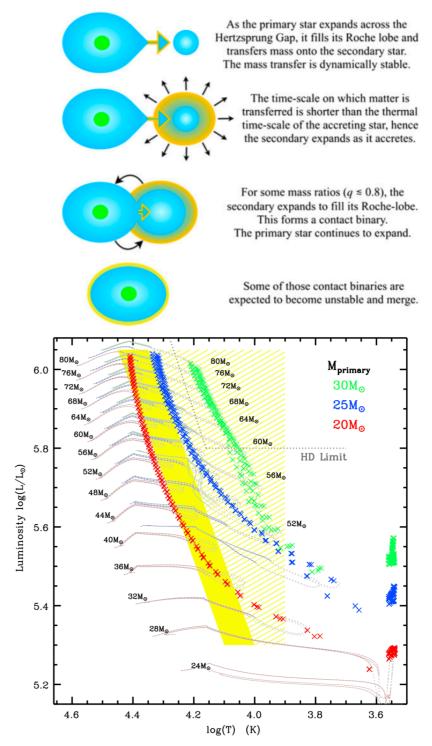


Possible scenarios

- Isolated environment
 - · Binary system
 - Hierarchical triple system
 - · Inner BH-BH
 - More complicating channels
- Dense stellar cluster
 - Capture of a B-type star by a BH
 - More complicating interactions


Hierarchical triple (1)

- . The merger product should be $\gtrsim 70 M_{\odot}$.
- . If it has a radius of $\gg 200 M_{\odot}$, it is a He star.
- · It experiences common envelope evolution with the B-type star.
 - · It loses its envelope, and collapses to a $\lesssim 45 M_{\odot}$ BH.
 - It merges with the B-type star, and the system should not be a binary system.
- . The inner binary should be separated from the B-type star by $\sim 200R_{\odot}$, and never has no interaction with the B-type star.


Hierarchical triple (2)

- The separation of the inner binary should be $\lesssim 100R_{\odot}$. Otherwise, the system is unstable (Harrington 1972; Mardling, Aarseth 1999).
- The primary star of the inner binary should be $\gtrsim 35M_{\odot}$.
 - . $\lesssim 100 M_{\odot}$ stars exceed $\sim 100 R_{\odot}$ when they are in Hertzsprung gap phases. The inner binary experiences a Case B merger.
 - . $\gtrsim 100 M_{\odot}$ stars exceed $\sim 100 R_{\odot}$ when they are in MS phases. The inner binary experiences a MS-MS merger. The merger product cannot avoid PPI/PISN.

Case B merger

- When the primary star is in a Hertzsprung gap phase, the binary can experience Case B merger.
- But, the merger product has $\sim 200R_{\odot}$, and merges with the B-type companion.
 - . A $35M_{\odot} + 35M_{\odot}$ merger product gets the smallest radius $\gtrsim 200R_{\odot}$.
 - The mass ratio of the merger product to the B-type star is high ≥ 10.

Justham et al. (2014)

Possible scenarios

- · Isolated environment
 - · Binary system
 - · Hierarchical triple system
 - · Inner BH-BH
 - More complicating channels
- Dense stellar cluster
 - Capture of a B-type star by a BH
 - More complicating interactions

Summary

- . A $70M_{\odot}$ BH in LB-1 has been reported.
- · The presence may be doubtful, but is under dispute.
- We have examined the formation rate of LB-1, but LB-1 has no chance to be formed through dynamical interactions, and hierarchical triple systems, if the standard model of single and binary stars is correct.
- . We don't deny the presence of $70M_{\odot}$ BHs in wide binaries with $\gg 200R_{\odot}$ under metal-poor environments.