70M_ののブラックホールを持つ

とされる連星系LB-1の形成過程

について

発表者:谷川衝1

共同研究者:衣川智弥1,熊本淳1,藤井通子1 所属機関:1東京大学

日本天文学会2020年秋季年会, 弘前, 2020年9月10日

Tanikawa, Kinugawa, Kumamoto, Fujii (2020, PASJ, 72, 39) arXiv:1912.04509

概要

- ・ 天の川銀河の全散開星団内でできるLB-1のような天体の形成率を見積もった。
- ・この形成率からはLB-1の存在を説明できない.
- ・観測,恒星・連星進化理論のどこかに間違いがある と考えられる。

Stellar-mass black hole (BH)

- A final state of massive stars
- X-ray binaries and merging BHs
- Not enough information
 - X-ray binaries are short-period binaries, P ≤ 1 day (Corral-Santana et al. 2016).
 - The origin of merging BHs are unknown.

BHs in long-period binaries

- AS 386: 131 days, $7M_{\odot}$ compact object (Khokhlov et al. 2018)
- A detached binary in NGC 3201: 167 days, $4.36M_{\odot}$ compact object (Giesers et al. 2018)
- 2MASS J05215658+4359220: 83 days, $3.3M_{\odot}$ compact object (Thompson et al. 2019, Science, 366, 637)

$$\frac{M_{\rm CO}^3 \sin^3 i_{\rm orb}}{(M_{\rm giant} + M_{\rm CO})^2} = \frac{K^3 P_{\rm orb}}{2\pi G} (1 - e^2)^{3/2} \sim 0.766 M_{\odot} \rightarrow M_{\rm CO} \gtrsim 2.9 M_{\odot}$$

$$\begin{split} R_{\text{giant}} &= v_{\text{spin}} P_{\text{spin}} / 2\pi \sim \frac{23 \pm 1 R_{\odot}}{\sin i_{\text{spin}}} \left(\frac{v_{\text{spin}}}{14.1 \text{kms}^{-1}} \right) \left(\frac{P_{\text{spin}}}{82.2 \text{day}} \right) \\ M_{\text{giant}} &= g_{\text{giant}} R_{\text{giant}}^2 / G \sim \frac{4.4_{-1.5}^{+2.2} M_{\odot}}{\sin^2 i_{\text{spin}}} \left(\frac{R_{\text{giant}}}{23 R_{\odot}} \right)^2 \left(\frac{g}{10^{2.35} \text{cms}^{-2}} \right) \\ P_{\text{spin}} \sim P_{\text{orb}}, e \sim 0 \rightarrow i_{\text{spin}} \sim i_{\text{orb}} \sim i \text{ (synchronized)} \end{split}$$

LB-1

- $8M_{\odot}$ B-type star $70M_{\odot}$ BH
- $a \sim 1$ au, $e \sim 0.03$, $Z \sim Z_{\odot}$
- L, T, and g constrain B-type star mass.
- The ratio of radial velocity determines BH mass.

What's surprising?

- High metallicity $(Z \sim Z_{\odot})$
 - Stellar wind mass loss reduces BH mass to $\leq 20M_{\odot}$.
 - The mass loss rate should be 5 times smaller than previously thought.
- Circular orbit ($e \sim 0.03$)
 - Circularization timescale $(\sim 10^{14} \text{ yr})$ is much more than the Hubble time.

Reduced stellar wind

- BH progenitors should have $M_{\rm tot} \gtrsim 70 M_{\odot}$ and $M_{\rm c,He} \lesssim 45 M_{\odot}$.
 - BH progenitors with $M_{\rm c,He} \gtrsim 45 M_{\odot}$ reduce BH masses to $M_{\rm BH} \sim 45 M_{\odot}$ through mass loss of pulsatoinal pair instability (PPI).
 - BH progenitors with $M_{c,He} \gtrsim 65 M_{\odot}$ leave no remnants due to pair instability supernovae (PISNe)
 - GW observation supports PPI/PISN.
- The binary size $(a \sim 1au \sim 200R_{\odot})$
 - $a_i \lesssim 1$ au ... MS merger
 - $a_i \gtrsim 1$ au ... Common envelope
 - $a_i \gg 1$ au ... No interaction ($a \gg 1$ au)

Possibility of double BHs

- The merger time through gravitational wave is $\sim 10^4$ yr.
- The merger time is smaller than the lifetime of the B-type star by three order of magnitude.
- This probability is quite low.
- (Shen et al. 2019)

Possible scenario

- Binary evolution
- Hierarchical multiplicity
 - Inner BH-BHs
 - (More complicating channels)
- Dense stellar cluster
 - Capture of a B-type star by a BH
 - More complicating channels

Counter opinions on " $70M_{\odot}$ "

- No evidence that H_{α} is associated with the BH
- Radial velocity variability disappears when H_{α} absorption by the B-type star is considered.
- H_{α} may be associated with circumbinary materials.

El-Badry, Quataert (2020; see also Abdul-Masih et al. 2019)

phase

"Postgenitor" problem

- LB-1 system will evolve to an ULX source in future.
 - Roche-lobe overflow will starts when the B-type star enters into a Hertzsprung gap (HG) phase.
 - The HG star rapidly expands, and achieves a high accretion rate onto the BH.
- The number of ULXs inferred by LB-1 is larger than observed in the MW by an order of magnitude.

Our stance

- The presence of the $70M_{\odot}$ BH may be doubtful.
- However, another theoretically-challenging binary may be reported in future.
- The usual meaning of the "theoretically-challenging" is "challenging in the framework in binary evolution".
- We use this opportunity to notice dynamical formation of a binary in dense stellar clusters, using LB-1 as a good example.

The most efficient process

- 1. Collision of a naked He star with a MS star which has a B-type companion.
 - The He star must not have Hydrogen envelope.
- 2. The collision product and B-type companion form a binary system.
- 3. The binary system is circularized through dynamical tide of the collision product's envelope.
- 4. The collision product collapses to a $70M_{\odot}$ BH.
 - It can avoid PPI/PISN because of small He core.

In an open cluster of the MW galaxy

Collision rate

• Formation rate of PI-gap BHs in OCs

•
$$\dot{N}_{\rm PIgap} \sim 2 \times 10^{-6} \left(\frac{f_{\rm PIgap}}{0.002} \right) \left(\frac{\rho_{\rm oc}}{10^4 M_{\odot} {\rm pc}^{-3}} \right) \left(\frac{\eta_{20}}{0.003 M_{\odot}^{-1}} \right) \left(\frac{f_{\rm oc}}{0.2} \right) \left(\frac{\dot{M}_{\rm mw}}{2M_{\odot} {\rm yr}^{-1}} \right) [{\rm yr}^{-1}]$$

• Formation path fraction

•
$$\frac{\Gamma_{\rm nHe}}{\Gamma_{\rm eHe}} \sim 10^{-2} \left(\frac{N_{1,\rm nHe}/N_{1,\rm eHe}}{2}\right) \left(\frac{M_{12,\rm nHe}/M_{12,\rm eHe}}{0.7}\right) \left(\frac{R_{12,\rm nHe}/R_{12,\rm eHe}}{0.01}\right)$$

• Collision rate

•
$$\dot{N}_{\text{coll}} = \dot{N}_{\text{PIgap}} \frac{\Gamma_{\text{nHe}}}{\Gamma_{\text{eHe}}} P_{\text{b}} \sim 3 \times 10^{-9} \left(\frac{\dot{N}_{\text{PIgap}}}{2 \times 10^{-6} \text{ yr}^{-1}}\right) \left(\frac{\Gamma_{\text{nHe}}/\Gamma_{\text{eHe}}}{10^{-2}}\right) \left(\frac{P_{\text{b}}}{0.1}\right) \text{ [yr}^{-1}$$

Circularization

- The binary is rapidly circularized through tidal interaction.
- If the collision product collapses to a BH before swallowing the B-type star, the binary becomes LB-1.
 - The collapse time is at random, since the naked He star wandered in an OC for a long time.
- Circularization time

.

$$t_{\rm cric} \sim 2 \times 10^4 \left(\frac{R_{\rm coll}}{100R_{\odot}}\right)^{-9} \text{[yr]}$$

• Kelvin-Helmholtz time (expansion time)

•
$$t_{\rm KH} \sim 2 \times 10^4 \left(\frac{M_{\rm coll}}{70M_{\odot}}\right)^2 \left(\frac{R_{\rm coll}}{100R_{\odot}}\right)^{-1} \left(\frac{L_{\rm coll}}{10^5 L_{\odot}}\right)^{-1} \, [\rm yr]$$

• Surviving probability

$$P_{\text{surv}} = t_{\text{KH}} / t_{\text{coll,life,max}} \sim 0.1 \left(\frac{t_{\text{coll,life,max}}}{0.2 \text{Myr}}\right)^{-1}$$

The formation rate

• The number of LB-1-like systems in the MW

$$N_{\rm LB1} \sim 0.01 \left(\frac{\dot{N}_{\rm coll}}{3 \times 10^{-9} {\rm yr}^{-1}} \right) \left(\frac{P_{\rm surv}}{0.1} \right) \left(\frac{T_{\rm B}}{40 {\rm Myr}} \right)$$

• No chance to form LB-1-like systems in OCs

Other stellar collisions

- Collision of He stars with H envelope does not work.
 - He star have $R \gg a$.
- Collision products of two MSs or two naked He stars cannot avoid PPI/PISN
- Collision rate of BH and other stars is lower than or similar to the above process.

	MS	He star	Naked He star	BH
MS	PPI/ PISN			
He star	R>>a	R>>a		
Naked He star	Done	R>>a	PPI/ PISN	
BH	Similar rate	R>>a	Lower rate	Lower rate

Possible scenario

- Binary evolution
- Hierarchical multiplicity
 - Inner BH-BHs
 - (More complicating channels)
- Dense stellar cluster
 - Capture of a B-type star by a BH
 - More complicating channels

Summary

- A $70M_{\odot}$ BH in LB-1 has been reported.
- The presence may be doubtful, but is under dispute.
- We have examined the formation rate of LB-1, but LB-1 has no chance to be formed through dynamical interactions, and hierarchical triple systems, if the standard model of single and binary stars is correct.
- We don't deny the presence of $70M_{\odot}$ BHs in wide binaries with $\gg 200R_{\odot}$ under metal-poor environments.

Back-up slides

What is LB-1 in reality?

- The B-type star can be a stripped helium star with $\sim 1.1 M_{\odot}$ (Irrgang et al. 2019).
- The luminosity is consistent if the Gaia distance is adopted (Eldridge et al. 2019; Irrgang et al. 2019).
- The unseen companion can be a neutron star.

Capture processes

- At first, there is no circularization process
- OC-origin: $N_{\rm b} \sim 0.7 \rightarrow N_{\rm b,cir} \sim 7 \times 10^{-4}$
- GC-origin: No B-type star
- Interstellar space-origin: $N_{\rm b} \sim 7 \times 10^{-8}$

Hierarchical triple (1)

- The merger product should be $\gtrsim 70 M_{\odot}$.
- If it has a radius of $\gg 200M_{\odot}$, it is a He star.
- It experiences common envelope evolution with the B-type star.
 - It loses its envelope, and collapses to $a \leq 45 M_{\odot}$ BH.
 - It merges with the B-type star, and the system should not be a binary system.
- The inner binary should be separated from the B-type star by $\sim 200R_{\odot}$, and never has no interaction with the B-type star.

Hierarchical triple (2)

- The separation of the inner binary should be $\leq 100R_{\odot}$. Otherwise, the system is unstable (Harrington 1972; Mardling, Aarseth 1999).
- The primary star of the inner binary should be $\gtrsim 35M_{\odot}$.
 - $\leq 100 M_{\odot}$ stars exceed ~ $100 R_{\odot}$ when they are in Hertzsprung gap phases. The inner binary experiences a Case B merger.
 - $\gtrsim 100 M_{\odot}$ stars exceed ~ $100 R_{\odot}$ when they are in MS phases. The inner binary experiences a MS-MS merger. The merger product cannot avoid PPI/PISN.

Case B merger

- When the primary star is in a Hertzsprung gap phase, the binary can experience Case B merger.
- But, the merger product has $\sim 200R_{\odot}$, and merges with the B-type companion.
 - A $35M_{\odot} + 35M_{\odot}$ merger product gets the smallest radius $\gtrsim 200R_{\odot}$.
 - The mass ratio of the merger product to the B-type star is high $\gtrsim 10$.

log(T) (K)

Justham et al. (2014)

Pulsational Pair Instabiliity

Fig. 3. Adopted models for pair-instability pulsation supernova mass loss. For a given He core mass we show the mass of a star after PPSN mass loss. Moderate PPSN mass loss is adopted directly from Leung et al. (2019), while its modified (50% reduced mass loss) version is presented as weak PPSN model. Strong PPSN are adopted from Belczynski et al. (2016c).