$70 M_{\odot}$ のブラックホールを持つ とされる連星系LB－1の形成過程
 について

発表者：谷川衝 ${ }^{1}$
共同研究者：衣川智弥 1 ，熊本淳 ${ }^{1}$ ，藤井通子 1
所属機関：1東京大学

日本天文学会2020年秋季年会，弘前，2020年9月10日
Tanikawa，Kinugawa，Kumamoto，Fujii（2020，PASJ，72，39） arXiv：1912．04509

概要
－天の川銀河の全散開星団内でできるLB－1のような天体の形成率を見積もった。

- この形成率からはLB－1の存在を説明できない。
- 観測，恒星•連星進化理論のどこかに間違いがある と考えられる。

Stellar-mass black hole (BH)

- A final state of massive stars
- X-ray binaries and merging BHs
- Not enough information
- X-ray binaries are short-period binaries, $P \lesssim 1$ day (Corral-
 Santana et al. 2016).
- The origin of merging BHs are unknown.

BHs in long-period binaries

- AS 386: 131 days, $7 M_{\odot}$ compact object (Khokhlov et al. 2018)
- A detached binary in NGC 3201: 167 days, $4.36 M_{\odot}$ compact object (Giesers et al. 2018)
- 2MASS J05215658+4359220: 83

 days, $3.3 M_{\odot}$ compact object (Thompson et al. 2019, Science, $366,637)$

$$
\begin{gathered}
\frac{M_{\mathrm{CO}}^{3} \sin ^{3} i_{\text {orb }}}{\left(M_{\text {giant }}+M_{\mathrm{CO}}\right)^{2}}=\frac{K^{3} P_{\text {orb }}}{2 \pi G}\left(1-e^{2}\right)^{3 / 2} \sim 0.766 M_{\odot} \rightarrow M_{\mathrm{CO}} \gtrsim 2.9 M_{\odot} \\
R_{\text {giant }}=v_{\text {spin }} P_{\text {spin }} / 2 \pi \sim \frac{23 \pm 1 R_{\odot}}{\sin i_{\text {spin }}}\left(\frac{v_{\text {spin }}}{14.1 \mathrm{kms}^{-1}}\right)\left(\frac{P_{\text {spin }}}{82.2 \mathrm{day}}\right) \\
M_{\text {giant }}=g_{\text {giant }} R_{\text {giant }}^{2} / G \sim \frac{4.4_{-1.5}^{+2.2} M_{\odot}}{\sin ^{2} i_{\text {spin }}}\left(\frac{R_{\text {giant }}}{23 R_{\odot}}\right)^{2}\left(\frac{g}{10^{2.35} \mathrm{cms}^{-2}}\right) \\
P_{\text {spin }} \sim P_{\text {orb }}, e \sim 0 \rightarrow i_{\text {spin }} \sim i_{\text {orb }} \sim i \text { (synchronized) }
\end{gathered}
$$

LB-1

- $8 M_{\odot}$ B-type star - $70 M_{\odot}$ BH
- $a \sim 1$ au, $e \sim 0.03, Z \sim Z_{\odot}$
- L, T, and g constrain B-type star mass.
- The ratio of radial velocity determines BH mass.

Liu et al. (2019, Nature, 575, 618)

What's surprising?

- High metallicity $\left(Z \sim Z_{\odot}\right)$
- Stellar wind mass loss reduces BH mass to $\lesssim 20 M_{\odot}$.
- The mass loss rate should be 5 times smaller than previously thought.
- Circular orbit ($e \sim 0.03$)
- Circularization timescale ($\sim 10^{14} \mathrm{yr}$) is much more than the Hubble time.

Reduced stellar wind

- BH progenitors should have $M_{\text {tot }} \gtrsim 70 M_{\odot}$ and $M_{\mathrm{c}, \mathrm{He}} \lesssim 45 M_{\odot}$.
- BH progenitors with $M_{\mathrm{c}, \mathrm{He}} \gtrsim 45 M_{\odot}$ reduce BH masses to $M_{\mathrm{BH}} \sim 45 M_{\odot}$ through mass loss of pulsatoinal pair instability (PPI).
- BH progenitors with $M_{\mathrm{c}, \mathrm{He}} \gtrsim 65 M_{\odot}$ leave no remnants due to pair instability supernovae (PISNe)
- GW observation supports PPI/PISN.
- The binary size $\left(a \sim 1 \mathrm{au} \sim 200 R_{\odot}\right)$
- $a_{i} \lesssim 1 \mathrm{au} \ldots$ MS merger
- $a_{i} \gtrsim 1 \mathrm{au} \ldots$ Common envelope
- $a_{i} \gg 1 \mathrm{au} \ldots$ No interaction $(a \gg 1 \mathrm{au})$

Possibility of double BHs

- The merger time through gravitational wave is $\sim 10^{4} \mathrm{yr}$.
- The merger time is smaller than the lifetime of the B-type star by three order of magnitude.
- This probability is quite low.
- (Shen et al. 2019)

Possible scenario

- Binary evolution
- Hierarchical multiplicity
- Imner BH-BHs
- (More complicating channels)
- Dense stellar cluster
- Capture of a B-type star by a BH
- More complicating channels

Counter opinions on " $70 M_{\odot}$ "

- No evidence that H_{α} is associated with the BH
- Radial velocity variability disappears when H_{α} absorption by the B-type star is considered.
- H_{α} may be associated with circumbinary materials.

El-Badry, Quataert (2020; see also Abdul-Masih et al. 2019)

"Postgenitor" problem

- LB-1 system will evolve to an ULX source in future.
- Roche-lobe overflow will starts when the B-type star enters into a Hertzsprung gap (HG) phase.
- The HG star rapidly expands, and achieves a high accretion rate onto the BH .
- The number of ULXs inferred by LB-1 is larger than observed in the MW by an order of magnitude.

Our stance

- The presence of the $70 M_{\odot} \mathrm{BH}$ may be doubtful.
- However, another theoretically-challenging binary may be reported in future.
- The usual meaning of the "theoretically-challenging" is "challenging in the framework in binary evolution".
- We use this opportunity to notice dynamical formation of a binary in dense stellar clusters, using LB-1 as a good example.

The most efficient process

1. Collision of a naked He star with a MS star which has a B-type companion.

- The He star must not have Hydrogen envelope.

2. The collision product and B-type companion form a binary system.
3. The binary system is circularized through dynamical tide of the collision product's envelope.
4. The collision product collapses to a $70 M_{\odot} \mathrm{BH}$.

- It can avoid PPI/PISN because of

In an open cluster of the MW galaxy
 small He core.

Collision rate

- Formation rate of PI-gap BHs in OCs

Di Carlo et al. (2020)

- $\dot{N}_{\text {Plgap }} \sim 2 \times 10^{-6}\left(\frac{f_{\text {PIgap }}}{0.002}\right)\left(\frac{\rho_{\text {oc }}}{10^{4} M_{\odot} \mathrm{pc}^{-3}}\right)\left(\frac{\eta_{20}}{0.003 M_{\odot}^{-1}}\right)\left(\frac{f_{\mathrm{oc}}}{0.2}\right)\left(\frac{\dot{M}_{\mathrm{mv}}}{2 M_{\odot \mathrm{yr}^{-1}}}\right)\left[\mathrm{yr}^{-1}\right]$
- Formation path fraction
- $\frac{\Gamma_{\mathrm{nHe}}}{\Gamma_{\mathrm{eHe}}} \sim 10^{-2}\left(\frac{N_{1, \mathrm{nHe}} / N_{1, \mathrm{eHe}}}{2}\right)\left(\frac{M_{12, \mathrm{nHe}} / M_{12, \mathrm{eHe}}}{0.7}\right)\left(\frac{R_{12, \mathrm{nHe}} / R_{12, \mathrm{eHe}}}{0.01}\right)$
- Collision rate
- $\dot{N}_{\text {coll }}=\dot{N}_{\text {Plgap }} \frac{\Gamma_{\mathrm{nHe}}}{\Gamma_{\mathrm{eHe}}} P_{\mathrm{b}} \sim 3 \times 10^{-9}\left(\frac{\dot{N}_{\mathrm{PIgap}}}{2 \times 10^{-6} \mathrm{yr}^{-1}}\right)\left(\frac{\Gamma_{\mathrm{nHe}} / \Gamma_{\mathrm{eHe}}}{10^{-2}}\right)\left(\frac{P_{\mathrm{b}}}{0.1}\right)\left[\mathrm{yr}^{-1}\right]$

MS star
Naked
He star

MS star
$\underbrace{}_{\text {Enveloped }}$
He star

Circularization

- The binary is rapidly circularized through tidal interaction.
- If the collision product collapses to a BH before swallowing the B-type star, the binary becomes LB-1.
- The collapse time is at random, since the naked He star wandered in an OC for a long time.
- Circularization time

$$
\text { . } t_{\text {cric }} \sim 2 \times 10^{4}\left(\frac{R_{\text {coll }}}{100 R_{\odot}}\right)^{-9} \quad[\mathrm{yr}]
$$

- Kelvin-Helmholtz time (expansion time)
. $t_{\mathrm{KH}} \sim 2 \times 10^{4}\left(\frac{M_{\text {coll }}}{70 M_{\odot}}\right)^{2}\left(\frac{R_{\text {coll }}}{100 R_{\odot}}\right)^{-1}\left(\frac{L_{\text {coll }}}{10^{5} L_{\odot}}\right)^{-1}[\mathrm{yr}]$
- Surviving probability

$$
\text { . } P_{\text {surv }}=t_{\mathrm{KH}} / t_{\text {coll,life, } \max } \sim 0.1\left(\frac{t_{\text {coll,life,max }}}{0.2 \mathrm{Myr}}\right)^{-1}
$$

Collapse

The formation rate

- The number of LB-1-like systems in the MW
- $N_{\mathrm{LB} 1} \sim 0.01\left(\frac{\dot{N}_{\text {coll }}}{3 \times 10^{-9} \mathrm{yr}^{-1}}\right)\left(\frac{P_{\text {surv }}}{0.1}\right)\left(\frac{T_{\mathrm{B}}}{40 \mathrm{Myr}}\right)$
- No chance to form LB-1-like systems in OCs

Other stellar collisions

- Collision of He stars with H envelope does not work.
- He star have $R \gg a$.
- Collision products of two MSs or two naked He stars cannot avoid PPI/PISN
- Collision rate of BH and other stars is lower than or similar to the above process.

	MS	He star	Naked He star	BH
MS	$\begin{gathered} \text { PPI/ } \\ \text { PISN } \end{gathered}$			
He star	$\mathrm{R} \gg \mathrm{a}$	$\mathrm{R} \gg \mathrm{a}$		
Naked He star	Done	$\mathrm{R} \gg \mathrm{a}$	PPI/ PISN	
BH	Similar rate	$\mathrm{R} \gg \mathrm{a}$	Lower rate	Lower rate

Possible scenario

- Binary evolution
- Hierarchical multiplicity
- Imner BH-BHs
- (More complicating channels)
- Dense stellar cluster
- Capture of a B-type star by a BH
- More complicating channels

Summary

- $\mathrm{A} 70 M_{\odot} \mathrm{BH}$ in LB-1 has been reported.
- The presence may be doubtful, but is under dispute.
- We have examined the formation rate of LB-1, but LB-1 has no chance to be formed through dynamical interactions, and hierarchical triple systems, if the standard model of single and binary stars is correct.
- We don't deny the presence of $70 M_{\odot} \mathrm{BHs}$ in wide binaries with $\gg 200 R_{\odot}$ under metal-poor environments.

Back-up slides

What is LB-1 in reality?

- The B-type star can be a stripped helium star with $\sim 1.1 M_{\odot}$ (Irrgang et al. 2019).
- The luminosity is consistent if the Gaia distance is adopted (Eldridge et al. 2019; Irrgang et al. 2019).
- The unseen companion can be a neutron star.

Capture processes

- At first, there is no circularization process
- OC-origin:
$N_{\mathrm{b}} \sim 0.7 \rightarrow N_{\mathrm{b}, \mathrm{cir}} \sim 7 \times 10^{-4}$
- GC-origin: No B-type star

$70 M_{\odot} \mathrm{BH}$
- Interstellar space-origin:

$$
N_{\mathrm{b}} \sim 7 \times 10^{-8}
$$

Hierarchical triple (1)

- The merger product should be $\gtrsim 70 M_{\odot}$.
- If it has a radius of $\gg 200 M_{\odot}$, it is a He star.
- It experiences common envelope evolution with the B-type star.
- It loses its envelope, and collapses to $\mathrm{a} \lesssim 45 M_{\odot} \mathrm{BH}$.
- It merges with the B-type star, and the system should not be a binary system.
- The inner binary should be separated from the B-type star by $\sim 200 R_{\odot}$, and never has no interaction with the B-type star.

Hierarchical triple (2)

- The separation of the inner binary should be $\lesssim 100 R_{\odot}$. Otherwise, the system is unstable (Harrington 1972; Mardling, Aarseth 1999).
- The primary star of the inner binary should be $\gtrsim 35 M_{\odot}$.
- $\lesssim 100 M_{\odot}$ stars exceed $\sim 100 R_{\odot}$ when they are in Hertzsprung gap phases. The inner binary
 experiences a Case B merger.
- $\gtrsim 100 M_{\odot}$ stars exceed $\sim 100 R_{\odot}$ when they are in MS phases. The inner binary experiences a MS-MS merger. The merger product cannot avoid PPI/PISN.

Case B merger

- When the primary star is in a Hertzsprung gap phase, the binary can experience Case B merger.
- But, the merger product has $\sim 200 R_{\odot}$, and merges with the B-type companion.
- A $35 M_{\odot}+35 M_{\odot}$ merger product gets the smallest radius $\gtrsim 200 R_{\odot}$.
- The mass ratio of the merger product to the B-type star is high $\gtrsim 10$.

Pulsational Pair Instabiliity

Fig. 3. Adopted models for pair-instability pulsation supernova mass loss. For a given He core mass we show the mass of a star after PPSN mass loss. Moderate PPSN mass loss is adopted directly from Leung et al. (2019), while its modified (50% reduced mass loss) version is presented as weak PPSN model. Strong PPSN are adopted from Belczynski et al. (2016c).

