ブラックホール連星形成の理論的研究 特に全質量150M_oであるGW190521を 初代星連星で作れるかどうかについて

Ataru Tanikawa¹

Collaborators: H. Susa², T. Yoshida¹, A. A. Trani¹, T. Kinugawa¹, K. Hijikawa¹, H. Umeda¹, K. Takahashi³

Affiliations: ¹The University of Tokyo, ²Konan University, ³Max Planck AEI 天体形成研究会2020, CCS, U. of Tsukuba, Nov. 2020

- Tanikawa et al. (2020a, MNRAS, 495, 4170)
- Tanikawa et al. (2020b, arXiv:2008.01890)
- Tanikawa et al. (2020c, arXiv:2010.07616)

- Pair instability (PI) mass gap and GW190521
- Difficulty to form PI mass gap BH
- Pop. III binary scenarios
- Our study

- Pair instability (PI) mass gap and GW190521
- Difficulty to form PI mass gap BH
- Pop. III binary scenarios
- Our study

Merger of binary black holes

10

100

LIGO-G2001862

200

300

Time (Days)

400

500

Credit: LIGO-Virgo Collaboration

- Gravitational wave (GW) observations have rapidly increased the number of discovered BH-BHs.
- The first detection is 2015 (GW150914).
- 10 BH-BHs were found until 2017 (O1/O2)
- 44 BH-BHs have been found until now (O1/O2/O3a).
- The number of BHs is larger than that discovered by X-ray observations.

incl. NS-NS,

NS-BH

BH mass distribution

•

 10^{1} TRUNCATED Model The BH mass distribution appears 10 Model B Model C not to have BHs with $\gtrsim 50 M_{\odot}$. 10^{-} lass gap tR/dm_1 [Gpc⁻ 10^{-2} Second mass gap 10^{-} 0.1; 10^{1} BROKEN POWER LAW 10^{0} Higher mass gap • 10^{-1} $d\mathcal{R}/dq \; [\mathrm{Gpc}^{-3} \, \mathrm{yr}^{-1}]$ $\begin{bmatrix} Gpc^{-3} yr^{-1} M_{\odot}^{-1} \end{bmatrix}$ Pair instability (PI) mass gap • :019) 0.1POWER LAW + PEAK • No BH with $50 - 130M_{\odot}$ due to $\frac{d\mathcal{R}}{dm_1}$ pulsational PI (PPI) and PI 10^{-} supernova (PISN)? 10^{-2} 10^{-} 10^{1} MULTI-PEAK 10^{0} 10^{-1} 10^{-2} 10^{-1} 60 Abbott et al. (2020) 20 $m_1 \left[M_\odot
ight]$

PPI and PISN

- Pulsational Pair Instability (PPI)
 - $40 \leq M_{\rm c,He,preSN}/M_{\odot} \leq 60$
 - He core partially disrupted
 - $M_{\rm bh} \sim 40 M_{\odot}$
- Pair instability supernova (PISN)
 - $60 \leq M_{\rm c,He,preSN}/M_{\odot} \leq 130$
 - He core completely disrupted
 - No remnant

GW190521

- Merger of $85^{+21}_{-14}M_{\odot}$ and $66^{+17}_{-18}M_{\odot}$ BHs
- The primary BH has only a 0.32% probability of being below $65M_{\odot}$.
- At least one BH lies within the PI mass gap.

TABLE I. Parameters of GW190521 according to the NRSur7dq4 waveform model. We quote median values with 90% credible intervals that include statistical errors.

Parameter	
Primary mass	$85^{+21}_{-14}~M_{\odot}$
Secondary mass	$66^{+17}_{-18}~M_{\odot}$
Primary spin magnitude	$0.69^{+0.27}_{-0.62}$
Secondary spin magnitude	$0.73_{-0.64}^{+0.24}$
Total mass	$150^{+29}_{-17}~M_{\odot}$
Mass ratio $(m_2/m_1 \le 1)$	$0.79_{-0.29}^{+0.19}$
Effective inspiral spin parameter (χ_{eff})	$0.08\substack{+0.27\\-0.36}$
Effective precession spin parameter (χ_p)	$0.68^{+0.25}_{-0.37}$
Luminosity Distance	$5.3^{+2.4}_{-2.6}$ Gpc
Redshift	$0.82\substack{+0.28\\-0.34}$
Final mass	$142^{+28}_{-16}~M_{\odot}$
Final spin	$0.72\substack{+0.09\\-0.12}$
$P(m_1 < 65 M_{\odot})$	0.32%
log ₁₀ Bayes factor for orbital precession	$1.06\substack{+0.06\\-0.06}$
log ₁₀ Bayes factor for nonzero spins	$0.92\substack{+0.06\\-0.06}$
log ₁₀ Bayes factor for higher harmonics	$-0.38\substack{+0.06\\-0.06}$

Abbott et al. (2020)

- Pair instability (PI) mass gap and GW190521
- Difficulty to form PI mass gap BH
- Pop. III binary scenarios
- Our study

Single star evolution

- It is not hard to form mass-gap BH through single star evolution.
- Formation Process
 - A star with $M_{\text{zams}} \sim 90 M_{\odot}$ and $Z \sim 0.01 Z_{\odot}$.
 - Evolution to a BH progenitor with $M_{\rm tot} \sim 90 M_{\odot}$ and $M_{\rm c,He} \lesssim 40 M_{\odot}$.
 - Collapse to $\sim 90M_{\odot}$ BH without PPI/PISN owing to small He core mass.
- Light He core, massive H envelope

Belczynski et al. (2020)

Binary star evolution

- Merger of $85M_{\odot}$ and $66M_{\odot}$ BHs
 - Merger time ≤ 10 Gyr
 - $a \lesssim 10^2 R_{\odot}, e \sim 0$
- A star with $M_{\text{zams}} \gtrsim 80 M_{\odot}$ expands to $R \gtrsim 10^3 R_{\odot}$.
- The star loses its H envelope, stripped by its companion star.
- No massive H envelope, no massgap BH.

Many scenarios other than binary evolution

- Globular clusters, open clusters, AGN disks (e.g. Rodriguez et al. 2019; Di Carlo et al. 2020; Yang et al. 2019)
- PPI/PISN occurs in $M_{c,He} \gtrsim 90 M_{\odot}$ if the ${}^{12}C(\alpha,\gamma){}^{16}O$ rate is 3 times smaller than the standard one (Takahashi 2018; Farmer et al. 2020; Costa et al. 2020).
- Many more ...
- Our study of GW190521 formation
 - Binary evolution isolated from star clusters
 - PPI/PISN for $M_{\rm c,He} \gtrsim 40 M_{\odot}$ as usual

- Pair instability (PI) mass gap and GW190521
- Difficulty to form PI mass gap BH
- Pop. III binary scenarios
- Our study

Pop. III binary star evolution

- Pop. III star with $M_{\text{zams}} = 85 M_{\odot}$
 - Weak stellar wind mass loss
 - Expansion up to $\sim 160R_{\odot}$
 - He core with $\leq 40 M_{\odot}$
- GW190521 can be formed from a Pop. III binary !!!

Uncertainty of Pop. III model

- No massive Pop. III star is discovered so far.
- Extrapolation from nearby stars to Pop. III stars
- Nearby star models
 - AB-type stars in MW open clusters, M model GENEC(Ekstrom et al. 2012), adopted by Farrell et al. (2020)
 - Early B-type stars in LMC, Stern (Brott et al. 2011)
 L model
- The maximums radius of a $80M_{\odot}$ star
 - M model: ~ $40R_{\odot}$, similar to Farrell et al. (2020)
 - L model: $\sim 3 \times 10^3 R_{\odot}$, similar to Yoon et al. (2012)
- If the L model is correct, a Pop. III binary cannot form GW190521, the same as Pop. I/II binaries.

Yoshida et al. (2019)

Convective overshooting

• Overshoot parameter: $f_{ov} \sim 0.02$ (Kippenhahn et al. 1990; 2012)

$$D(z) = D_0 \exp \frac{-2z}{f_{\rm ov} H_{\rm P}}$$

- M model: $f_{\rm ov} = 0.01$
- L model: $f_{\rm ov} = 0.03$
- Larger overshoot parameter (more effective overshooting)
 - Larger He core at the end of MS
 - Larger luminosity in post-MS
 - Larger radius in post-MS

- Pair instability (PI) mass gap and GW190521
- Difficulty to form PI mass gap BH
- Pop. III binary scenarios
- Our study

Binary population synthesis

- BSE (Hurley et al. 2000; 2002) modified by Tanikawa et al. (2020a)
- Single star evolution
 - Fryer's rapid model with PPI/PISN
 - No stellar wind nor BH natal kick
- Binary star evolution
 - Tidal interaction
 - Stable mass transfer, common envelope
 - GW orbital decay
 - Etc.
- Initial conditions
 - $f(m_1) \propto m_1^{-1}, f(q) \propto \text{const}, f(a) \propto a^{-1}, f(e) \propto e$
- Cumulative Pop. III density
 - ~ $10^{13} M_{\odot} \text{pc}^{-3}$ comparable to Magg et al. (2016) and Skinner, Wise (2020)

Tanikawa et al. (2020c)

Introduction of BPS

BH mass distribution

• M model

- The maximum mass: $\sim 100 M_{\odot}$
- Stars lose little mass through binary interactions.
- Pop. III stars can form GW190521-like BH-BHs.
- Support for the claims of Farrell et al. (2020) and Kinugawa et al. (2020)
- L model
 - The maximum mass: $\sim 50 M_{\odot}$
 - Stars lose their H envelopes through binary interactions
 - No Pop. III stars can form GW190521-like BH-BHs.

If GW190521 is Pop.III ...

- Even if the M model is correct, no Pop. III binary can form BH-BHs with $100 130M_{\odot}$.
- If GW190521 is Pop. III, the merger rate of BH-BHs with $100 130M_{\odot}$ is much smaller than with $50 100M_{\odot}$.
- But, the converse is not true.
 - A Pop. II binary can form GW190521 if the ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction rate is 3 times smaller than the standard rate (Belczynski 2020).

Summary

- GW190521 is a merger of a BH-BH with at least a BH in the PI mass gap.
- GW190521 can be formed from a Pop. III binary (Farrell et al. 2020; Kinugawa et al. 2020)
- We have shown that the Pop. III scenario strongly depends on the effectiveness of convective overshooting.
- If GW190521 is a Pop. III origin, the merger rate of $100 130M_{\odot}$ BHs is much smaller than that of $50 100M_{\odot}$.
 - But, the converse is not true.

Lモデル詳細

- Initial conditions
 - $m_{1, \max} = 150 M_{\odot} \rightarrow 300 M_{\odot}$
- 130M₀以上のBH形成
- BH Mergers of $> 130M_{\odot}$ and $< 50M_{\odot}$ are $\sim 10^{-2}$ Gpc⁻³yr⁻¹.
- GW190521 could be below and above the mass gap (Fishbach, Holtz 2020; Nitz, Capano 2020).

