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Merger of binary black holes
• Gravitational wave (GW) 

observations have rapidly 
increased the number of 
discovered BH-BHs. 

• The first detection is 2015 
(GW150914). 

• 10 BH-BHs were found until 
2017 (O1/O2) 

• 44 BH-BHs have been found until 
now (O1/O2/O3a). 

• The number of BHs is larger than 
that discovered by X-ray 
observations. incl. NS-NS, 

NS-BH



BH mass distribution
• The BH mass distribution appears 

not to have BHs with ! . 

• Second mass gap 

• Higher mass gap 

• Pair instability (PI) mass gap 

• No BH with !  due to 
pulsational PI (PPI) and PI 
supernova (PISN)?

≳ 50M⊙

50 − 130M⊙

Abbott et al. (2019)

Mass gap

Abbott et al. (2020)



Abbott et al. (2019)

PPI and PISN
• Pulsational Pair Instability (PPI) 

• !  

• He core partially disrupted 

• !  

• Pair instability supernova (PISN) 

• !  

• He core completely disrupted 

• No remnant

40 ≲ Mc,He,preSN/M⊙ ≲ 60

Mbh ∼ 40M⊙

60 ≲ Mc,He,preSN/M⊙ ≲ 130 Mass gap

40 ≲ Mc,He,preSN /M⊙ ≲ 60

60 ≲ Mc,He,preSN /M⊙ ≲ 130

Mbh /M⊙ ∼ 40

No remnant

Partial disruption

Complete disruption



GW190521
• Merger of !  and !  

BHs 

• The primary BH has only a 0.32% 
probability of being below ! . 

• At least one BH lies within the PI 
mass gap.
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Single star evolution
• It is not hard to form mass-gap BH 

through single star evolution. 

• Formation Process 

• A star with !  and 
! . 

• Evolution to a BH progenitor 
with !  and 
! . 

• Collapse to !  BH 
without PPI/PISN owing to 
small He core mass. 

• Light He core,  massive H envelope

Mzams ∼ 90M⊙
Z ∼ 0.01Z⊙

Mtot ∼ 90M⊙
Mc,He ≲ 40M⊙

∼ 90M⊙

Belczynski et al. (2020)

Mass-gap BH

Weak stellar 
wind

Mc,He ≲ 40M⊙

Me,H ≳ 50M⊙

No PPI/PISN

Mbh ∼ 90M⊙

Mzams ∼ 90M⊙

Z ∼ 0.01Z⊙



Binary star evolution
• Merger of !  and !  BHs 

• !  

•  !  

• A star with !  
expands to ! . 

• The star loses its H envelope, 
stripped by its companion star. 

• No massive H envelope, no mass-
gap BH.

85M⊙ 66M⊙

Merger time ≲ 10 Gyr

a ≲ 102R⊙, e ∼ 0

Mzams ≳ 80M⊙
R ≳ 103R⊙

10M⊙

20M⊙

40M⊙

80M⊙

103R⊙102R⊙10R⊙

Tanikawa et al. (2020a)

104R⊙

Me,H ≳ 50M⊙
Mc,He ≲ 40M⊙

Mc,He ≲ 40M⊙

Mbh ≲ 40M⊙



Many scenarios other than 
binary evolution

• Globular clusters, open clusters, AGN disks (e.g. Rodriguez et 
al. 2019; Di Carlo et al. 2020; Yang et al. 2019) 

• PPI/PISN occurs in !  if the !  rate is 3 
times smaller than the standard one (Takahashi 2018; Farmer 
et al. 2020; Costa et al. 2020). 

• Many more … 

• Our study of GW190521 formation 

• Binary evolution isolated from star clusters 

• PPI/PISN for !  as usual

Mc,He ≳ 90M⊙
12C(α, γ)16O

Mc,He ≳ 40M⊙
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Pop. III binary star evolution
• Pop. III star with !   

• Weak stellar wind mass loss 

• Expansion up to !  

• He core with !  

• GW190521 can be formed from a 
Pop. III binary !!!

Mzams = 85M⊙

∼ 160R⊙

≲ 40M⊙ 50R⊙

85M⊙

500R⊙10R⊙

Farrell et al. (2020)

Kinugawa et al. (2020)



Uncertainty of Pop. III model
• No massive Pop. III star is discovered so far. 

• Extrapolation from nearby stars to Pop. III stars 

• Nearby star models 

• AB-type stars in MW open clusters, 
GENEC(Ekstrom et al. 2012), adopted by 
Farrell et al. (2020) 

• Early B-type stars in LMC, Stern (Brott et al. 
2011)  

• The maximums radius of a !  star 

• M model: ! , similar to Farrell et al. 
(2020) 

• L model: ! , similar to Yoon et al. 
(2012) 

• If the L model is correct, a Pop. III binary cannot 
form GW190521, the same as Pop. I/II binaries.

80M⊙

∼ 40R⊙

∼ 3 × 103R⊙

M model

L model

Yoshida et al. (2019)

Tanikawa et al. (2020c)

80M⊙

40M⊙

20M⊙

10M⊙

103R⊙102R⊙101R⊙ 104R⊙

Two Pop. III 
models



Convective overshooting
• Overshoot parameter: !  

(Kippenhahn et al. 1990; 2012) 

• !  

• M model: !  

• L model: !  

• Larger overshoot parameter (more 
effective overshooting) 

• Larger He core at the end of MS 

• Larger luminosity in post-MS 

• Larger radius in post-MS

fov ∼ 0.02

D(z) = D0 exp
−2z
fovHP

fov = 0.01

fov = 0.03

Troposphere

StoratosphereOvershooting

Radiative envelope

Convective core 
(Progenitor of He core)

Convective 
overshooting
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Binary population synthesis
• BSE (Hurley et al. 2000; 2002) modified by 

Tanikawa et al. (2020a) 

• Single star evolution 

• Fryer’s rapid model with PPI/PISN 

• No stellar wind nor BH natal kick 

• Binary star evolution 

• Tidal interaction 

• Stable mass transfer, common envelope 

• GW orbital decay 

• Etc. 

• Initial conditions 

• ! , ! , ! , !  

• Cumulative Pop. III density 

• !  comparable to Magg et al. (2016) 
and Skinner, Wise (2020)

f (m1) ∝ m−1
1 f (q) ∝ const f (a) ∝ a−1 f (e) ∝ e

∼ 1013M⊙pc−3

80M⊙

40M⊙

20M⊙

10M⊙

103R⊙102R⊙101R⊙ 104R⊙

Tanikawa et al. (2020c)

PPI

PISN

Mass gap 
BH



Introduction of BPS
ZAMS stars

Common envelope (CE1)

Stable mass transfer

Direct 
collapse

Direct 
collapse
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BH mass distribution
• M model 

• The maximum mass: !  

• Stars lose little mass through binary interactions. 

• Pop. III stars can form GW190521-like BH-
BHs. 

• Support for the claims of Farrell et al. (2020) 
and Kinugawa et al. (2020) 

• L model 

• The maximum mass: !  

• Stars lose their H envelopes through binary 
interactions 

• No Pop. III stars can form GW190521-like BH-
BHs.

∼ 100M⊙

∼ 50M⊙ M model

It depends on the choice of Pop. III models, 
or overshoot parameters



If GW190521 is Pop.III …
• Even if the M model is correct, no 

Pop. III binary can form BH-BHs 
with ! . 

• If GW190521 is Pop. III, the 
merger rate of BH-BHs with 
!  is much smaller 
than with ! . 

• But, the converse is not true. 

• A Pop. II binary can form 
GW190521 if the !  
reaction rate is 3 times smaller 
than the standard rate 
(Belczynski 2020).

100 − 130M⊙

100 − 130M⊙
50 − 100M⊙

12C(α, γ)16O ∼ 50M⊙

∼ 130M⊙

Usual BHs

Above PISN

Primary BH mass

R
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GW190521

BHs in star clusters

∼ 100M⊙ ∼ 130M⊙

∼ 50M⊙

Usual BHs
Pop. III BHs

Above PISN 
(Tanikawa et 
al. 2020b)R
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GW190521

Another 
mass gap

Abbott et al. (2020)



Summary
• GW190521 is a merger of a BH-BH with at least a BH in the 

PI mass gap. 

• GW190521 can be formed from a Pop. III binary (Farrell et 
al. 2020; Kinugawa et al. 2020) 

• We have shown that the Pop. III scenario strongly depends on 
the effectiveness of convective overshooting. 

• If GW190521 is a Pop. III origin, the merger rate of 
!  BHs is much smaller than that of ! . 

• But, the converse is not true.

100 − 130M⊙ 50 − 100M⊙



Lモデル詳細
• Initial conditions 

• !  

• ! 以上のBH形成 

• BH Mergers of !  and 
!  are ! . 

• GW190521 could be below and 
above the mass gap (Fishbach, 
Holtz 2020; Nitz, Capano 2020).

m1, max = 150M⊙ → 300M⊙

130M⊙

> 130M⊙
< 50M⊙ ∼ 10−2Gpc−3yr−1

Tanikawa et al. (2020b)


