連星ブラックホール形成：孤立連星と球状星団
Binary black hole formation：
binary evolution and dynamical capture
谷川 衝（東京大学），Ataru Tanikawa（U．of Tokyo）初代星•初代銀河研究会，First star and first galaxy
2020 年11月，東北大学，Nov．2020，Tohoku U．

Contents

- From O1/O2 to O3a
- Globular clusters
- Pop. III binaries

Contents

- From O1/O2 to O3a
- Globular clusters
- Pop. III binaries

GW events

- The first detection GW150914 in 2015 (only LIGO)
- $10 \mathrm{BH}-\mathrm{BHs}$ discovered in O1/O2 by 2017 (entry of Virgo)
- 44 confident BH-BHs in O1/O2/ O3a by the last month
- GW sensitivity to NS-NSs
- H: 66 Mpc to 108 Mpc
- L: 88 Mpc to 135 Mpc
- V: 26 Mpc to 45 Mpc

$\mathrm{BH}-\mathrm{BH}$ rate density

- O1/O2: 53.2 ${ }_{-28.2}^{+55.8} \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
- O1/O2/O3a
- No cosmic evolution: $23.9_{-8.6}^{+14.9} \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
- Cosmic evolution: $19.7_{-15.9}^{+57.3} \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$ at $z=0$
- $\sim 10-100 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1} \rightarrow \sim 10 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
- Good news for scenarios other than binary evolution?

BH mass distribution

- Primary BH
- Global maximum at $7.8_{-2.1}^{+2.2} M_{\odot}$
- Lower mass gap inferred by BH X-ray binaries
- Break or bump at $\sim 40 M_{\odot}$
- Pair instability (or Pop. III?)
- Mass ratio
- Consistent with $q=m_{2} / m_{1} \sim 1$
- But, see GW190412, GW190426_152155 (NS-BH?) and GW190814 (NS-BH?)

BH spin distribution

- $12-44 \%$ of BH-BH spins tilted by $>90^{\circ}$
- $\sim 500 \mathrm{~km} / \mathrm{s}$ BH kick?
- Intrinsic spin?
- Dynamical capture?
- No single event with $\chi_{\mathrm{p}}>0$ nor $\chi_{\text {eff }}<0$

Cosmic evolution

- $\mathscr{R}_{\text {BH-BH }} \propto(1+z)^{K}$
- Consistent with a non-evolving distribution ($\kappa=0$)
- But, more consistent with $\kappa=1.3_{-2.1}^{+2.1}$ and $\kappa=1.8_{-2.2}^{+2.1}$
- Slower than the star formation rate $(\kappa=2.7)$
- BH-BHs with long delay time

BH-BH formation scenarios

- Binary evolution (Kinugawa's talk)
- Pop. I/II common envelope evolution
- Pop. I/II chemically homogeneous evolution
- Pop. III stable mass transfer
- Dynamical capture in dense stellar clusters
- Globular cluster (Alessandro's and Long's talks)
- Open cluster (Kumamoto's and Alessandro's talks)
- Galactic center (Tagawa's talk)
- Hierarchical multiple star evolution
- Primordial BH

Contents

- From O1/O2 to O3a
- Globular clusters
- Pop. III binaries

Black hole budget (GC)

. BH-BH density: $n_{\mathrm{BH}-\mathrm{BH}} \sim 10^{11} \mathrm{Gpc}^{-3}\left(\frac{\Gamma_{\mathrm{BH}-\mathrm{BH}}}{10 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}}\right)\left(\frac{T_{\text {Hubble }}}{10 \mathrm{Gyr}}\right)$

- Binary evolution:
$n_{\mathrm{BH}, \mathrm{star}} \sim 10^{15} \mathrm{Gpc}^{-3}\left(\frac{\rho_{\mathrm{star}}}{10 \mathrm{M}}\right)\left(\begin{array}{l}n_{\mathrm{BH}} \\ \text { • } \frac{n_{\mathrm{BH}-\mathrm{BH}}}{n_{\mathrm{BH}, \mathrm{star}}} \sim 10^{-4}\left(\frac{\Gamma_{\mathrm{BH}-\mathrm{BH}}}{10 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}}\right) \\ \text { Dynamical capture in globular clusters: }\end{array} \quad\right.$ Kroupa (2001), $M_{\mathrm{zams}} \gtrsim 20 M_{\odot} \rightarrow \mathrm{BH}$
. $n_{\mathrm{BH}, \mathrm{GC}} \sim 10^{12} \mathrm{Gpc}^{-3}\left(\frac{\rho_{\mathrm{star}}}{10^{18} M_{\odot} \mathrm{Gpc}^{-3}}\right)\left(\frac{\eta_{\mathrm{BH}}}{10^{-3} M_{\odot}}\right)\left(\frac{\rho_{\mathrm{GC}} / \rho_{\mathrm{star}}}{10^{-3}-1}\right)$
. $\frac{n_{\mathrm{BH}-\mathrm{BH}}}{n_{\mathrm{BH}, \mathrm{GC}}} \sim 0.1\left(\frac{\Gamma_{\mathrm{BH}-\mathrm{BH}}}{10 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}}\right)\left(\frac{\rho_{\mathrm{GC}} / \rho_{\mathrm{star}}}{10^{-3}}\right)$
MW GC

Supplementary budget

- More many GCs at the formation time $\left(\rho_{\mathrm{GC}} / \rho_{\mathrm{star}}>10^{-3}\right)$
- Gas expulsion
- Stellar evolution mass loss (stellar wind, supernova)
- Thermodynamical evaporation
- Repeated mergers (e.g. Rodriguez et al. 2019)
- Dark clusters (e.g. Wang 2020)

BH-BH Energetics

- $t_{\mathrm{gw}}=\frac{5}{256} \frac{c^{5}}{G^{3}} \frac{a^{4}}{m_{1} m_{2}\left(m_{1}+m_{2}\right)} g(e)$
- $g(e)=\frac{\left(1-e^{2}\right)^{3.5}}{1+(73 / 24) e^{2}+(37 / 96) e^{4}}$
- $a_{\mathrm{esc}}=\frac{f_{1} f_{2}}{2} \frac{G m}{v_{\mathrm{esc}}^{2}}$
- $v^{2}=f_{1} \frac{\Delta E}{m}$
- $\Delta E=f_{2} E=f_{2} \frac{G m^{2}}{2 a}$

$$
v_{\mathrm{s}}=\underbrace{\left[\left(1-f_{1}\right) \frac{\Delta E}{2 m}\right]^{1 / 2}}_{E=E_{0}+\Delta E} \underbrace{v_{\mathrm{b}}=\left[f_{1} \frac{\Delta E}{m}\right]^{1 / 2}}_{\mathrm{b}}
$$

. $t_{\mathrm{gw}}=12 \mathrm{Gyr}\left(\frac{f_{1}}{1 / 3}\right)^{4}\left(\frac{f_{2}}{1 / 1.4}\right)^{4}\left(\frac{m}{30 M_{\odot}}\right)\left(\frac{v_{\mathrm{esc}}}{50 \mathrm{~km} / \mathrm{s}}\right)^{-8}\left(\frac{g(e)}{g(0.9)}\right)$

Numerical simulation

- N-body simulation (Portegies Zwart, McMillan 2000; Banerjee et al. 2010; Tanikawa 2013; Fujii et al. 2017; etc)
- Small N ($\lesssim 10^{5}$), but $N \sim 10^{6}$ in reality
- Toy model (O’Leary et al. 2006; Sadowski et al. 2008; etc)
- No cluster evolution
- Monte Carlo method (Downing et al. 2010; Rodriguez et al. 2016; Askar et al. 2017; etc)
- $N \sim 10^{6}$, but approximate evolution

Monte Carlo method

- Single and binary stars orbit in a GC with constant E and J during two-body relaxation time.
- Their E and J diffuse every two-body relaxation time.
- They probabilistically experience close encounters with other single or binary stars, which calculated as gravitational few-body problems.
- They evolve due to stellar evolution and binary evolution, such as tidal interaction, mass transfer, common envelope evolution, and so on.
- Two codes: CMC (Rodriguez), MOCCA (Giersz)
- Several problems are becoming clear (Long 's talk).

In-cluster mergers

- 10% of BH-BHs merge inside of GCs owing to high eccentricity.
- The MOCCA code (right)
- The CMC code (below)
- This allows repeated mergers.
- BHs with large masses and spins
- Filling of pair-instability mass gap

PPI and PISN

- Pulsational Pair Instability (PPI)
- $40 \lesssim M_{\mathrm{c}, \mathrm{He}, \mathrm{preSN}} / M_{\odot} \lesssim 60$
- He core partially disrupted
- $M_{\mathrm{bh}} \sim 40 M_{\odot}$
- Pair instability supernova (PISN)
- $60 \lesssim M_{\mathrm{c}, \mathrm{He}, \mathrm{preSN}} / M_{\odot} \lesssim 130$
- He core completely disrupted
- No remnant

BH Mass distribution

. $\frac{\mathscr{R}_{\mathrm{BH}-\mathrm{BH}}\left(M_{\mathrm{tot}}=150 M_{\odot}\right)}{\mathscr{R}_{\mathrm{BH}-\mathrm{BH}}\left(M_{\mathrm{tot}}=70 M_{\odot}\right)} \sim 10^{-1}-10^{-1.5}$ at $z<1$ inferred by GW observations
. $\frac{\mathscr{R}_{\mathrm{BH}-\mathrm{BH}}\left(M_{\mathrm{tot}}=150 M_{\odot}\right)}{\mathscr{R}_{\mathrm{BH}-\mathrm{BH}}\left(M_{\mathrm{tot}}=70 M_{\odot}\right)}<10^{-2}$ at $z<1$ for GCs

- Strong PPI/PISN model (No $>40 M_{\odot} \mathrm{BH}$ without stellar a BH mergers)

Rodriguez et al. (2019)

BH spin distribution

- Isotropic spin distribution for GCs
- GC BH-BHs may need other populations if they are the major component.

Open clusters

- Enough BH budget
- Common envelope and dynamical capture (Kumamoto et al. 2019; 2020)
- Mass gap BHs (Di Carlo et al. 2019; 2020) via post-MS and MS mergers (Kirihara's study can apply to)
- Strong PPI/PISN model (No $>40 M_{\odot}$ BH without stellar and BH mergers)

Di Carlo et al (2020)

Banerjee (2020)

- $\sim 1 \%$ of $\mathrm{BH}-\mathrm{BH}$ mergers leave finite eccentricities at LIGO/Virgo/KAGRA bands.
- Their masses are similar to those of incluster mergers, but smaller than those of ejected BH-BHs.
- The present-day BHs in GCs are lighter than previously ejected BHs.
- GW190521 might be an eccentric merger (Gayathri et al. 2020; Romero-Shaw et al. 2020).
- But, people who believe it are supporters of the AGN scenario (Samsing et al. 2020; Tagawa et al. 2020).

Samsing, Ramirez-Ruiz (2017)

Rodriguez et al. (2018)

Contents

- From O1/O2 to O3a
- Globular clusters
- Pop. III binaries
- Tanikawa, Yoshida, Kinugawa, Takahashi, Umeda (2020a, MNRAS, 495, 4170)
- Tanikawa, Susa, Yoshida, Trani, Kinugawa (2020b, arXiv:2008.01890)
- Tanikawa, Kinugawa, Yoshida, Hijikawa, Umeda (2020c, arXiv:2010.07616)

Black hole budget (Pop. III)

. BH-BH density: $n_{\mathrm{BH}-\mathrm{BH}} \sim 10^{11} \mathrm{Gpc}^{-3}\left(\frac{\Gamma_{\mathrm{BH}-\mathrm{BH}}}{10 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}}\right)\left(\frac{T_{\text {Hubble }}}{10 \mathrm{Gyr}}\right)$

- Binary evolution:

. $\frac{n_{\mathrm{BH}-\mathrm{BH}}}{n_{\mathrm{BH}, \mathrm{III}}} \sim 1\left(\frac{\Gamma_{\mathrm{BH}-\mathrm{BH}}}{10 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}}\right)$

$$
\begin{aligned}
& f(M) \propto M^{-1}\left(10 \leq M / M_{\odot} \leq 100\right) \\
& M_{\text {zams }} \gtrsim 20 M_{\odot} \rightarrow \mathrm{BH}
\end{aligned}
$$

Magg et al. (2016); Skinner, Wise (2020); but de Souza et al. (2011); Inayoshi et al. (2016)

Binary population synthesis

- $10 \leq m_{1, \text { zams }} / M_{\odot} \leq 300$
- $10 / m_{1, \text { zams }} \leq m_{2, \text { zams }} / m_{1, \text { zams }} \leq 1$
- $r_{\mathrm{p}, \mathrm{i}} \geq 10$ or $200 R_{\odot}$
- Pop. III model with large convective overshooting (L model)
- Mass transfer, common envelope etc.
- Fryer's SN model with PPI/PISN
- One Pop. III binary per minihalo

Tanikawa et al. (2020a)

Pop. III BH-BHs

Kinugawa's peak
$r_{\mathrm{p}, \mathrm{i}} \geq 10 R_{\odot}$

MT path CE path

w/o Kinugawa's peak $\quad r_{\mathrm{p}, \mathrm{i}} \geq 200 R_{\odot}$

ontia0.0a2e2
CE path

$$
\Gamma_{m_{1} \leqslant 50 M_{\odot}} \sim 0.1 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}
$$

Pop. III BH-BHs

- $\Gamma_{m_{1} \leqslant 50 M_{\odot}} \sim 0.1 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
- $\Gamma_{50 M_{\odot} \leqslant m_{1} \leqslant 130 M_{\odot}} \sim 0 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
- $\Gamma_{m_{1} \gtrsim 130 M_{\odot}} \sim 0.01 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$
- GW190521 can be $m_{1} \gtrsim 130 M_{\odot}$ (e.g. Fishbach, Holz 2020).

Tanikawa et al. (2020b)

GW190521

- Merger of $85_{-14}^{+21} M_{\odot}$ and $66_{-18}^{+17} M_{\odot}$ BHs
- The primary BH has only a 0.32% probability of being below $65 M_{\odot}$.
- At least one BH lies within the PI mass gap.

TABLE I. Parameters of GW190521 according to the NRSur7dq4 waveform model. We quote median values with 90% credible intervals that include statistical errors.

Parameter

Primary mass
Secondary mass
Primary spin magnitude
Secondary spin magnitude
Total mass
Mass ratio ($m_{2} / m_{1} \leq 1$)
Effective inspiral spin parameter $\left(\chi_{\text {eff }}\right)$
Effective precession spin parameter $\left(\chi_{\mathrm{p}}\right)$
Luminosity Distance
Redshift
Final mass
Final spin
$P\left(m_{1}<65 M_{\odot}\right)$
$\log _{10}$ Bayes factor for orbital precession
$\log _{10}$ Bayes factor for nonzero spins
$\log _{10}$ Bayes factor for higher harmonics

Abbott et al. (2020)

Single star evolution

- It is not hard to form mass-gap BH through single star evolution.
- Formation Process
- A star with $M_{\text {zams }} \sim 90 M_{\odot}$ and $Z \sim 0.01 Z_{\odot}$.
- Evolution to a BH progenitor with $M_{\text {tot }} \sim 90 M_{\odot}$ and $M_{\mathrm{c}, \mathrm{He}} \lesssim 40 M_{\odot}$.
- Collapse to $\sim 90 M_{\odot} \mathrm{BH}$ without PPI/PISN owing to small He core mass.

$\begin{aligned} & M_{\mathrm{ini}} \\ & \left(M_{\odot}\right) \end{aligned}$	M_{CO} $\left(M_{\odot}\right)$	$\begin{aligned} & M_{\mathrm{He}} \\ & \left(M_{\odot}\right) \end{aligned}$	\# of PPI	Ejection \#	$\log T_{\text {peak }}$ (K)	$\begin{aligned} & M_{\mathrm{rem}} \\ & \left(M_{\odot}\right) \end{aligned}$	Ejecta Energy $\left(10^{50} \mathrm{erg}\right)$
L Models ($f_{\text {OV }}=0.03$)							
70	34.2	38.9-48.8	4	0	-	70	-
75	34.9	39.3	4	1	9.81	42.4	6.5
80	37.4	42.2-42.9	3	1	9.71	42.4	0.18
100	48.1	53.6	2	1	9.65	52.2	4.5
120	57.9	64.9	1	1	9.66	60.3	4.7
135	65.4	73.5	1	1	9.63	66.9	5.6
M Models ($f_{\text {OV }}=0.01$)							
70	27.0	30.3-34.4	0	0	-	70	-
80	31.8	35.3-39.4	5	0	-	80	-
90	37.2	41.9-44.8	3	1	9.76	83.0	1.4
1 m	$10 \cdot$	170-6 1	-	1	- 70	817	$1=$

Pop. III

Umeda et al. (2020)

Binary star evolution

- Merger of $85 M_{\odot}$ and $66 M_{\odot} \mathrm{BHs}$
- Merger time $\lesssim 10 \mathrm{Gyr}$
- $a \lesssim 10^{2} R_{\odot}, e \sim 0$
- A star with $M_{\text {zams }} \gtrsim 80 M_{\odot}$ expands to $R \gtrsim 10^{3} R_{\odot}$.
- The star loses its H envelope, stripped by its companion star.
- No massive H envelope, no massgap BH.

BH natal kick

Tanikawa et al. (2020b)

Summary

- Globular clusters can fill the pair instability mass gap.
- But, the event rate ratio does not seem consistent.
- Pop. III merger rate with $m_{1} \gtrsim 130 M_{\odot}$ is $\sim 0.01 \mathrm{Gpc}^{-3} \mathrm{yr}^{-1}$.
- It may be consistent with GW190521 if GW190521 contains $m_{1} \gtrsim 130 M_{\odot}$ (e.g. Fishbach, Holtz 2020)
- Whether Pop. III binaries can form GW190521 strongly depends on convective overshooting.

