

連星ブラックホール形成:孤立連星と球状星団

Binary black hole formation: binary evolution and dynamical capture
谷川 衝(東京大学), Ataru Tanikawa (U. of Tokyo)
初代星・初代銀河研究会, First star and first galaxy
2020年11月,東北大学, Nov. 2020, Tohoku U.

Contents

- From O1/O2 to O3a
- Globular clusters
- Pop. III binaries

Contents

- From O1/O2 to O3a
- Globular clusters
- Pop. III binaries

GW events

- The first detection GW150914 in 2015 (only LIGO)
- 10 BH-BHs discovered in O1/O2 by 2017 (entry of Virgo)
- 44 confident BH-BHs in O1/O2/ O3a by the last month
- GW sensitivity to NS-NSs
 - H: 66Mpc to 108Mpc
 - L: 88Mpc to 135Mpc
 - V: 26Mpc to 45Mpc

BH-BH rate density

- O1/O2: $53.2^{+55.8}_{-28.2}$ Gpc⁻³ yr⁻¹
- O1/O2/O3a
 - No cosmic evolution: $23.9^{+14.9}_{-8.6}$ Gpc⁻³ yr⁻¹
 - Cosmic evolution: $19.7^{+57.3}_{-15.9}$ Gpc⁻³ yr⁻¹ at z = 0
- $\sim 10 100 \text{ Gpc}^{-3} \text{ yr}^{-1} \rightarrow \sim 10 \text{ Gpc}^{-3} \text{ yr}^{-1}$
- Good news for scenarios other than binary evolution?

BH mass distribution

- Primary BH
 - Global maximum at $7.8^{+2.2}_{-2.1}M_{\odot}$
 - Lower mass gap inferred by BH X-ray binaries
 - Break or bump at $\sim 40 M_{\odot}$
 - Pair instability (or Pop. III?)
- Mass ratio
 - Consistent with $q = m_2/m_1 \sim 1$
 - But, see GW190412, GW190426_152155 (NS-BH?) and GW190814 (NS-BH?)

BH spin distribution

- 12-44% of BH-BH spins tilted by $> 90^{\circ}$
 - $\sim 500 \text{ km/s BH kick?}$
 - Intrinsic spin?
 - Dynamical capture?
- No single event with $\chi_p > 0$ nor $\chi_{eff} < 0$

Cosmic evolution

- $\mathscr{R}_{\text{BH-BH}} \propto (1+z)^{\kappa}$
- Consistent with a non-evolving distribution ($\kappa = 0$)
- But, more consistent with $\kappa = 1.3^{+2.1}_{-2.1}$ and $\kappa = 1.8^{+2.1}_{-2.2}$
- Slower than the star formation rate ($\kappa = 2.7$)
- BH-BHs with long delay time

BH-BH formation scenarios

- Binary evolution (Kinugawa's talk)
 - Pop. I/II common envelope evolution
 - Pop. I/II chemically homogeneous evolution
 - Pop. III stable mass transfer
- Dynamical capture in dense stellar clusters
 - Globular cluster (Alessandro's and Long's talks)
 - Open cluster (Kumamoto's and Alessandro's talks)
 - Galactic center (Tagawa's talk)
- Hierarchical multiple star evolution
- Primordial BH

Contents

- From O1/O2 to O3a
- Globular clusters
- Pop. III binaries

Black hole budget (GC)

$$\begin{array}{c} \text{BH-BH density: } n_{\text{BH-BH}} \sim 10^{11} \text{Gpc}^{-3} \left(\begin{array}{c} \Gamma_{\text{BH-BH}} \\ 100 \text{Gpc}^{-3} \text{yr}^{-1} \end{array} \right) \left(\begin{array}{c} T_{\text{Hubble}} \\ 10 \text{Gyr} \end{array} \right) \\ \text{Binary evolution:} \\ n_{\text{BH,star}} \sim 10^{15} \text{Gpc}^{-3} \left(\begin{array}{c} \rho_{\text{star}} \\ 100 \text{Fgc}^{-3} \end{array} \right) \left(\begin{array}{c} \eta_{\text{BH}} \\ 100 \text{Fgc}^{-3} \end{array} \right) \\ \text{Abbott et al. (2020)} \\ \text{Abbott et al. (2021)} \\ \text$$

Supplementary budget

- More many GCs at the formation time ($\rho_{\rm GC}/\rho_{\rm star} > 10^{-3}$)
 - Gas expulsion
 - Stellar evolution mass loss (stellar wind, supernova)
 - Thermodynamical evaporation
- Repeated mergers (e.g. Rodriguez et al. 2019)
- Dark clusters (e.g. Wang 2020)

Numerical simulation

- N-body simulation (Portegies Zwart, McMillan 2000; Banerjee et al. 2010; Tanikawa 2013; Fujii et al. 2017; etc)
 - Small N ($\leq 10^5$), but $N \sim 10^6$ in reality
- Toy model (O'Leary et al. 2006; Sadowski et al. 2008; etc)
 - No cluster evolution
- Monte Carlo method (Downing et al. 2010; Rodriguez et al. 2016; Askar et al. 2017; etc)
 - $N \sim 10^6$, but approximate evolution

Monte Carlo method

- Single and binary stars orbit in a GC with constant E and J during two-body relaxation time.
- Their E and J diffuse every two-body relaxation time.
- They probabilistically experience close encounters with other single or binary stars, which calculated as gravitational few-body problems.
- They evolve due to stellar evolution and binary evolution, such as tidal interaction, mass transfer, common envelope evolution, and so on.
- Two codes: CMC (Rodriguez), MOCCA (Giersz)
- Several problems are becoming clear (Long 's talk).

In-cluster mergers

- 10% of BH-BHs merge inside of GCs owing to high eccentricity.
 - The MOCCA code (right)
 - The CMC code (below)
- This allows repeated mergers.
 - BHs with large masses and spins
 - Filling of pair-instability mass gap

PPI and PISN

- Pulsational Pair Instability (PPI)
 - $40 \leq M_{\rm c,He,preSN}/M_{\odot} \leq 60$
 - He core partially disrupted
 - $M_{\rm bh} \sim 40 M_{\odot}$
- Pair instability supernova (PISN)
 - $60 \leq M_{\rm c,He,preSN}/M_{\odot} \leq 130$
 - He core completely disrupted
 - No remnant

BH Mass distribution

•
$$\frac{\mathscr{R}_{\rm BH-BH}(M_{\rm tot} = 150M_{\odot})}{\mathscr{R}_{\rm BH-BH}(M_{\rm tot} = 70M_{\odot})} \sim 10^{-1} - 10^{-1.5}$$

at $z < 1$ inferred by GW
observations

$$\frac{\mathscr{R}_{\rm BH-BH}(M_{\rm tot} = 150M_{\odot})}{\mathscr{R}_{\rm BH-BH}(M_{\rm tot} = 70M_{\odot})} < 10^{-2}$$

at z < 1 for GCs

• Strong PPI/PISN model (No > 40 M_{\odot} BH without stellar a BH mergers) Rodriguez et al. (2019) • Strong PPI/PISN model (No > 40 M_{\odot} BH without stellar a 10^{-1} 10^{-2} 10^{-2} 50Total Mass (M_{\odot})

BH spin distribution

- Isotropic spin distribution for GCs
- GC BH-BHs may need other populations if they are the major component.

Open clusters

- Enough BH budget
- Common envelope and dynamical capture (Kumamoto et al. 2019; 2020)
- Mass gap BHs (Di Carlo et al. 2019; 2020) via post-MS and MS mergers (Kirihara's study can apply to)
- Strong PPI/PISN model (No $> 40M_{\odot}$ BH without stellar and BH mergers)

Kumamoto et al. (2019;2020)

BH-BH eccentricity

- ~1% of BH-BH mergers leave finite eccentricities at LIGO/Virgo/KAGRA bands.
- Their masses are similar to those of incluster mergers, but smaller than those of ejected BH-BHs.
- The present-day BHs in GCs are lighter than previously ejected BHs.
- GW190521 might be an eccentric merger (Gayathri et al. 2020; Romero-Shaw et al. 2020).
 - But, people who believe it are supporters of the AGN scenario (Samsing et al. 2020; Tagawa et al. 2020).

Contents

- From O1/O2 to O3a
- Globular clusters
- Pop. III binaries
 - Tanikawa, Yoshida, Kinugawa, Takahashi, Umeda (2020a, MNRAS, 495, 4170)
 - Tanikawa, Susa, Yoshida, Trani, Kinugawa (2020b, arXiv:2008.01890)
 - Tanikawa, Kinugawa, Yoshida, Hijikawa, Umeda (2020c, arXiv:2010.07616)

Black hole budget (Pop. III)

Binary population synthesis

- $10 \le m_{1,\text{zams}}/M_{\odot} \le 300$
- $10/m_{1,\text{zams}} \le m_{2,\text{zams}}/m_{1,\text{zams}} \le 1$
- $r_{\rm p,i} \ge 10 \text{ or } 200 R_{\odot}$
- Pop. III model with large convective overshooting (L model)
- Mass transfer, common envelope etc.
- Fryer's SN model with PPI/PISN
- One Pop. III binary per minihalo

Pop. III BH-BHs

Tanikawa et al. (2020b)

Pop. III BH-BHs

•
$$\Gamma_{m_1 \lesssim 50 M_{\odot}} \sim 0.1 \ {\rm Gpc}^{-3} \ {\rm yr}^{-1}$$

- $\Gamma_{50M_{\odot} \leq m_1 \leq 130M_{\odot}} \sim 0 \text{ Gpc}^{-3} \text{ yr}^{-1}$
- $\Gamma_{m_1 \gtrsim 130 M_{\odot}} \sim 0.01 \ {\rm Gpc}^{-3} \ {\rm yr}^{-1}$
 - GW190521 can be $m_1 \gtrsim 130 M_{\odot}$ (e.g. Fishbach, Holz 2020).

Tanikawa et al. (2020b)

GW190521

- Merger of $85^{+21}_{-14}M_{\odot}$ and $66^{+17}_{-18}M_{\odot}$ BHs
- The primary BH has only a 0.32% probability of being below $65M_{\odot}$.
- At least one BH lies within the PI mass gap.

TABLE I. Parameters of GW190521 according to the NRSur7dq4 waveform model. We quote median values with 90% credible intervals that include statistical errors.

Parameter	
Primary mass	$85^{+21}_{-14}~M_{\odot}$
Secondary mass	$66^{+17}_{-18}~M_{\odot}$
Primary spin magnitude	$0.69^{+0.27}_{-0.62}$
Secondary spin magnitude	$0.73_{-0.64}^{+0.24}$
Total mass	$150^{+29}_{-17}~M_{\odot}$
Mass ratio $(m_2/m_1 \le 1)$	$0.79_{-0.29}^{+0.19}$
Effective inspiral spin parameter (χ_{eff})	$0.08\substack{+0.27\\-0.36}$
Effective precession spin parameter (χ_p)	$0.68^{+0.25}_{-0.37}$
Luminosity Distance	$5.3^{+2.4}_{-2.6}$ Gpc
Redshift	$0.82\substack{+0.28\\-0.34}$
Final mass	$142^{+28}_{-16}~M_{\odot}$
Final spin	$0.72^{+0.09}_{-0.12}$
$P(m_1 < 65 M_{\odot})$	0.32%
log ₁₀ Bayes factor for orbital precession	$1.06\substack{+0.06\\-0.06}$
log ₁₀ Bayes factor for nonzero spins	$0.92\substack{+0.06\\-0.06}$
log ₁₀ Bayes factor for higher harmonics	$-0.38\substack{+0.06\\-0.06}$

Abbott et al. (2020)

Single star evolution

- It is not hard to form mass-gap BH through single star evolution.
- Formation Process
 - A star with $M_{\text{zams}} \sim 90 M_{\odot}$ and $Z \sim 0.01 Z_{\odot}$.
 - Evolution to a BH progenitor with $M_{\rm tot} \sim 90 M_{\odot}$ and $M_{\rm c,He} \lesssim 40 M_{\odot}$.
 - Collapse to $\sim 90M_{\odot}$ BH without PPI/PISN owing to small He core mass.
- Light He core, massive H envelope

Umeda et al. (2020)

Table 1. Summary of the results

$M_{ m ini}$	$M_{\rm CO}$	$M_{ m He}$	$\# \ {\rm of} \ {\rm PPI}$	Ejection $\#$	${\rm Log}\;T_{\rm peak}$	$M_{\rm rem}$	Ejecta Energy		
(M_{\odot})	(M_{\odot})	(M_{\odot})			(K)	(M_{\odot})	$(10^{50} { m erg})$		
L Models ($f_{OV}=0.03$)									
70	34.2	38.9 - 48.8	4	0	-	70	-		
75	34.9	39.3	4	1	9.81	42.4	6.5		
80	37.4	42.2 - 42.9	3	1	9.71	42.4	0.18		
100	48.1	53.6	2	1	9.65	52.2	4.5		
120	57.9	64.9	1	1	9.66	60.3	4.7		
135	65.4	73.5	1	1	9.63	66.9	5.6		
M Models ($f_{OV}=0.01$)									
70	27.0	30.3 - 34.4	0	0	-	70	-		
80	31.8	35.3 - 39.4	5	0	-	80	-		
90	37.2	41.9 - 44.8	3	1	9.76	83.0	1.4		
100	40.7	47 9 50 1	0	1	0.79	01 7	1 5		
Pop. III									
M_{z}	zam	s = '	70 <i>M</i>	$_{\odot} \rightarrow$	$M_{\rm bh}$	=	$70 M_{\odot}$		
$M_{\rm zams} = 80 M_{\odot} \rightarrow M_{\rm bh} = 80 M_{\odot}$									
	(interv	al: 3.1 yr)		2	9.80	77.7	39		

9.64

108.7

5.6

58.3 65.3-72.6

1

Binary star evolution

- Merger of $85M_{\odot}$ and $66M_{\odot}$ BHs
 - Merger time ≤ 10 Gyr
 - $a \lesssim 10^2 R_{\odot}, e \sim 0$
- A star with $M_{\text{zams}} \gtrsim 80 M_{\odot}$ expands to $R \gtrsim 10^3 R_{\odot}$.
- The star loses its H envelope, stripped by its companion star.
- No massive H envelope, no massgap BH.

BH natal kick

Tanikawa et al. (2020b)

Summary

- Globular clusters can fill the pair instability mass gap.
 - But, the event rate ratio does not seem consistent.
- Pop. III merger rate with $m_1 \gtrsim 130 M_{\odot}$ is ~ 0.01 Gpc⁻³ yr⁻¹.
 - It may be consistent with GW190521 if GW190521 contains $m_1 \gtrsim 130 M_{\odot}$ (e.g. Fishbach, Holtz 2020)
- Whether Pop. III binaries can form GW190521 strongly depends on convective overshooting.