Merging binary black holes in dense star clusters and in Pop. III environments

Genesis: The Fourth Annual Area Symposium Online <u>Ataru Tanikawa</u>¹

Collaborators:

Fujii M. S.², Hijikawa K.², Kinugawa T.³, **Kirihara T.**⁴, **Kumamoto J.**², Leigh N. W. C.⁵, Shikauchi M.², **Susa H.**⁴, Takahashi K.⁶, **Trani A. A.**¹, Umeda H.², Wang L.², Yoshida T.²

A03 group PI/coPI, A03 group Postdocs

¹University of Tokyo (Komaba), ²University of Tokyo (Hongo), ³University of Tokyo (ICRR), ⁴Konan University, ⁵Universidad de Concepcion, ⁶Max Planck Institute

Papers in 2020-2021

- Open clusters
 - Kumamoto, Fujii, AT (2020, MNRAS, 495, 4268) "Merger rate density of binary black holes formed in open clusters"
 - Kumamoto, Fujii, Trani, AT (2021, arXiv:2102.09323) "Spin distribution of binary black holes formed in open clusters"
 - Trani, AT, Fujii, Leigh, Kumamoto (2021, arXiv:2102.01689) "Spin misalignment of black hole binaries from young star clusters: comparison to GWTC-2 gravitational wave data" (see also Presentation No. 23)
 - AT, Kinugawa, Kumamoto, Fujii (2020, PASJ, 72, 39) "Formation rate of LB1-like systems through dynamical interactions"
 - Shikauchi, Kumamoto, AT, Fujii (2020, PASJ, 72, 45) "Gaia's detectability of black hole-main sequence star binaries formed in open clusters"
- Globular clusters
 - Wang, **Fujii**, **AT** (2021, arXiv:2101.09283, submitted) "Impact of initial mass functions on the dynamical channel of gravitational wave sources"
- Pop. III stars
 - Kirihara, Susa, AT (2021, submitted) "Merger conditions of a star-star interaction" (see also Presentation No. 22)
 - AT, Yoshida, Kinugawa, Takahashi, Umeda (2020, MNRAS, 495, 4170) "Fitting formulae for evolution tracks of massive stars under extreme metal-poor environments for population synthesis calculations and star cluster simulations"
- AT, Susa, Yoshida, Trani, Kinugawa (2021, arXiv:2008.01890, ApJ accepted) "Merger rate density of Population III binary black holes below, above and in the pair-instability mass gap"
- AT, Kinugawa, Yoshida, Hijikawa, Umeda (2020, arXiv:2010.07616, submitted) "Population III binary black holes: effects of convective overshooting on formation of GW190521"

Open clusters

- Formation path to BH-BHs
 - Binary stars at the initial time (primordial binaries) are not needed.
 - If not, binary stars are always formed dynamically.
 - Primordial binary cases are discussed in Di Carlo et al. (2019; 2020)
- Formation mechanism
 - Pop. II: common envelope
 - Pop. I: dynamical capture
- Differential merger rate density consistent with GW observations
 - No BH-BHs with $M_1 > 40 M_{\odot}$ due to the absence of $Z < 0.1 Z_{\odot}$ simulations

Kumamoto, Fujii, AT (2019, MNRAS, 486, 3942)

Kumamoto, Fujii, AT (2020, MNRAS, 495, 4268)

BH-BH effective spins

- Tidal spin up formulated by Hotokezaka & Piran (2017; see also Kushnir et al. 2016)
- $\sim 20\%$ of BH-BHs have positive effective spins.
 - It may be consistent with GW observations if we take into account observational errors (Tanaka-san's talk).
- Lower-mass BH-BHs have higher effective spins.
 - A possible clue to identify the BH-BH origin(s).
 - Consistent with Safarzadeh et al. (2020)'s argument.

Spin-orbit misalignment

- $\sim 10\%$ of merging BH-BHs with spinning BHs experience a single encounter with another BH before they merge or are ejected.
- Such a single encounter makes spin-orbit misalignment, and produces non-zero χ_p .
- The misalignment doesn't attain the isotropic distribution.
- See Presentation No. 23

Trani, AT et al. (2021, arXiv:2102.01689)

Globular clusters

- Globular cluster (GC) scenario (Portegies Zwart, McMillan 2000; Downing et al. 2010; Tanikawa 2013; Rodriguez et al. 2016; 2018; 2020; Fujii et al. 2017; Askar et al. 2017; Park et al. 2017; Samsing et al. 2018)
- It is unclear if GC-origin BH-BHs are numerous enough for the observed rate (but see Rodriguez et al. 2021)
 - The total cluster mass is 0.1-1% of the total stellar mass in the universe.
- Extra budget? (Weatherford et al. 2021)

Rodrigeuz et al. (2016)

Top heavy IMF in GCs

- Top heavy IMF
 - Nearby dense star forming region (Lu et al. 2013; Schneider et al. 2018; Hosek et al. 2019)
 - Multiple stellar population in GCs (Milone et al. 2017; Bastian, Lardo 2018; Wang et al. 2020)
- Advantages for the GC-origin BH-BH scenario
 - More many BHs in each GC
 - Difficulty of EM observations
- Can they be the extra budget?
 - Not necessarily
 - They form many BH-BHs, but the BH-BHs are not enough compact to merge within the Hubble time.

Wang, Fujii, AT et al. (2021, arXiv:2101.09283)

Stellar merger

- Importance
 - Pop. III clusters (Stacy et al. (2010; Clark et al. 2011; Greif et al. 2011; Smith et al. 2011; Susa 2019; Sugimura et al. 2020)
 - Formation of mass-gap BHs (Di Carlo et al. 2020)
 - Formation of IMBHs in GCs (Portegies Zwart et al. 2004; Sakurai et al. 2017)
- Accurate merger conditions required.
- See Presentation No. 22

15

-15

t=tm

t=tini

10

-10

-10

-20

-15

Ó

15 –15 x/α

Kirihara, Susa, AT (2021, submitted)

t=tmeraer+0.08tstop t=tmeraer+0.85tsto

-15

15

Pop. III BH-BHs

- Pop. III BH-BHs are one of promising origins of observed BH-BHs.
 - They typically have $M_{\rm BH} \sim 30 M_{\odot}$.
 - GW observations frequently find BH-BHs with $M_{\rm BH} \sim 30 M_{\odot}$.
- Uncertainties of Pop. III models?
- IMBHs ~ $10^2 10^3 M_{\odot}$?
- The mass-gap event (GW190521)?

Kinugawa et al. (2014)

Their mass distribution

- The merger rate density is insensitive to initial conditions, $\sim 10^{-14} \text{yr}^{-1} \text{Gpc}^{-3} M_{\odot}^{-1}$.
- The $30M_{\odot}$ peak disappears without close (~ $10R_{\odot}$) Pop. III binaries.
 - Pop. III binaries can be only $\gtrsim 100R_{\odot}$, since Pop. III stars expand to ~ $100R_{\odot}$ at their proto-stellar phases (Omukai, Palla 2001; 2003)
- The sum of IMBH-BH and IMBH-IMBH merger rates is ~ 1 yr⁻¹ within $z \sim 0.82$ in a conservative Pop. III formation rate.

AT et al. (2021, arXiv:2008.01890)

Mass-gap event (GW190521)

- Pop. III binaries can form the mass-gap event if Pop. III stars with $\sim 90M_{\odot}$ expand up to $\leq 100R_{\odot}$.
- It can be attained if convective overshoot is not effective.

Summary

- BH-BHs formed in open clusters: their mass, effective spin, and tilt angle distributions, consistent with GW observations.
- GCs with top-heavy IMF which do not increase GCorigin BH-BHs as expected.
- Stellar merger conditions determined.
- Pop. III BH-BHs: unexpectedly large merger rate of IMBHs, and a possible solution for the mass-gap event.