Population III binary population synthesis

International Teeminar Speaker: <u>Ataru Tanikawa¹</u>

Collaborators: Kinugawa T.¹, Hijikawa, K.¹, Susa H.², Takahashi K.³, Trani A. A.¹, Umeda H.¹, Yoshida T.⁴ Institutes:

¹The University of Tokyo, ²Konan University, ³Max Planck Institute, ⁴Kyoto University

About me

About me

• Tanikawa (2018, ApJ, 858, 26) Its of Wnite Tanikawa, Giersz, Arca Sedda intermediate mass BH (2021, arXiv:2103.14185)

Contents

- Gravitational wave (GW) observations and black hole (BH) mergers
- Fitting formulae of extremely metal poor (EMP) stars and very massive stars
- BH mergers from Population (Pop) III stars
- The pair instability (PI) mass-gap event GW190521

Gravitational wave (GW)

- The first detection of GWs is the first discovery of a BH merger 2015.
- The number of BH-BHs grows to ~ 50 only during 5 years.
- The origin of BH mergers
 - Isolated binary stars?
 - Multiple star systems?
 - Dense star clusters?
 - More than one channel?

Abbott et al. (2021)

Binary population synthesis and star cluster simulation

- Binary population synthesis and star cluster simulation are very powerful to predict properties of BH mergers.
- Single star evolution has to be followed in parallel with binary interaction and cluster evolution.
- Usually, the single star evolution is followed with
 - Fitting formulae
 - Lookup table
 - Not hydrodynamic simulation due to the high calculation cost

Belczynski et al. (2020)

Fitting formulas (FFs) of EMP stars and very massive stars

FFs for single star evolution

- Single-Star Evolution (SSE) (Hurley et al. 2000)
- Fitting formulae for stars with $M = 0.5 50M_{\odot}$ and Z = 0.0001 0.03
- Extended to $M \sim 1000 M_{\odot}$
- Coupled with
 - Binary population synthesis codes: BSE, MOBSE, StarTrack, COSMIC, ...
 - Star cluster simulation codes: NBODY6++GPU, MOCCA, PeTar, CMC...

Our FFs

- Extensions
 - To EMP stars with $Z = 10^{-8} Z_{\odot}$, identical to $Z = 0 Z_{\odot}$ stars
 - To very massive stars with $M = 1280 M_{\odot}$ for $Z = 10^{-8} Z_{\odot}$ and $Z = 10^{-2} 10^{-1} Z_{\odot}$
- Support for
 - BSE (e.g. Tanikawa et al. 2021, ApJ, 910, 30; Tanikawa et al. 2021, MNRAS in press, Hijikawa, AT et al. 2021, MNRAS in press)
 - MOCCA ... incorporated.
 - NBODY6++GPU and PeTar ... I'm happy to incorporate.

Reasons for EMP FFs

- Difficult to reproduce EMP star evolution by the FF of the most metal-poor stars in SSE $(Z = 10^{-4})$
- $Z = 2 \times 10^{-10}$ stars
 - No Hertzsprung-gap (HG)
 - \rightarrow Common envelope (CE) becomes easier to succeed.
 - No red supergiants for $10M_{\odot} \leq M \leq 50M_{\odot}$
 - \rightarrow Mass transfer (MT) becomes more stable (or avoids CE).

Marigo et al. (2001)

Overview of our FFs

- HG gradually appears with metallicity increasing.
- Red supergiant range becomes wider with metallicity increasing.
- $Z = 2 \times 10^{-4}$ star models look similar between original SSE and our FFs.
 - Not the same, because of different simulation data
- $Z = 2 \times 10^{-3}$ star models are also supported.

Tanikawa et al. (2020, MNRAS, 495, 4170)

BH mergers from Pop III stars

Pop III stars (First and metal-free stars)

- Consisting of primordial gas (mostly H and He)
- Born in the high-redshift universe
- Astrophysical importance: stellar nucleosynthesis, reionization, ...
- Top-heavy initial mass function (IMF) predicted theoretically (Omukai, Nishi 1998; Abel et al. 2002; Bromm, & Larson 2004)
- Not yet discovered (Frebel, Norris 2015 for review)
- Detectability of GWs from Pop III BH mergers

Greif et al. (2012)

Pop III BH mergers

- ~ $30M_{\odot}$ peak in BH mergers
 - A few $10M_{\odot}$ Pop III stars end with blue supergiants.
 - Blue supergiants tend to experience stable MT, not CE.
- Top-heavy IMF
 - Possibly many $> 100M_{\odot}$ Pop III stars
 - IMBH mergers?
- But, ...
 - Pop III formation rate may be too small (Hartwig et al. 2016; Belczynski et al. 2017)
 - Pop III binary stars might be only wide.

Pop III binary stars

- Pop III single stars expand up to $\sim 100R_{\odot}$ in protostar phases due to high mass accretion.
- Pop III stars may not form short-period binary stars with $a \leq 100R_{\odot}$.
- But, ...
 - Pop III binary stars may be formed after protostar phases.
 - Mass accretion is different between Pop III single and binary stars
- Two cases
 - With short-period binaries
 - Without short-period binaries

Initial conditions

- Instantaneous formation of Pop III stars: ~ $10^{13}M_{\odot}$ Gpc⁻³ at $z \sim 10$
 - Consistent with numerically predicted results (Magg et al. 2016; Skinner, Wise 2020; but see Inayoshi et al. 2021)
- Binary fraction: 1 (e.g. Sugimura et al. 2020)
- Primary IMF: $f(m_1) \propto m_1^{-1} (10M_{\odot} \le m_1 \le 300M_{\odot})$
- Mass ratio: $f(q) \propto \text{const} (10M_{\odot}/m_1 \le q \le 1)$
- Semi-major axis: $f(a) \propto a^{-1} (a_{\min} \le a \le 2000R_{\odot})$
 - $a_{\min} = 10R_{\odot} \text{ or } 200R_{\odot}$
- Eccentricity: $f(e) \propto e$

Numerical setup

- Tanikawa's FF with $Z = 10^{-8} Z_{\odot}$
- No stellar wind
- Fryer's rapid model for supernova with pair instability (PI) model like the strong PI of Belczynski et al. (2020).
- No natal kick
- Stellar envelope property in Post-MS phases
 - Radiative: $\log(T_{\text{eff}}) > 3.65$
 - CHeB phase in the original BSE
 - Convective: $\log(T_{\text{eff}}) < 3.65$
 - AGB phase in the original BSE

Mass distribution

 $\begin{bmatrix} 10^{0} & 10^{0} \\ 10^{-1} & 10^{-1} \\ 10^{-2} & 10^{-3} \\ 10^{-3} & 10^{-4} \end{bmatrix}$

 $\begin{bmatrix} 40\\ W^{\circ,s}\end{bmatrix}$

20

- The merger rate density is ~ 0.1yr⁻¹Gpc⁻³ regardless of a_{min} .
 - Much smaller than the observed rate $(\sim 10 \text{yr}^{-1} \text{Gpc}^{-3}).$
- The $30M_{\odot}$ peak disappears for $a_{\min} = 200R_{\odot}$
 - The stable MT channel needs short-period binaries.
- The PI mass gap $50 130 M_{\odot}$
- The merger rate density of IMBH mergers (IMBH-IMBH or IMBH-BH) is $\sim 0.01 \text{yr}^{-1}\text{Gpc}^{-3}$ regardless of a_{\min} .
 - Not violate the upper limit of $\sim 0.056 \text{yr}^{-1} \text{Gpc}^{-3}$ (LVK, arXiv: 2105.15120)
 - Detectable soon if our model is correct

Tanikawa et al. (2021, ApJ, 910, 30)

The PI mass-gap event GW190521

GW190521

- Merger of $85^{+21}_{-14}M_{\odot}$ and $66^{+17}_{-18}M_{\odot}$ BHs
- The primary BH has only a 0.32% probability of being below $65M_{\odot}$.
- At least one BH lies within the PI mass gap.
- Possible scenarios
 - Cluster origins (Rodriguez et al. 2019; Di Carlo et al. 2020; Tagawa et al. 2020; Fragione et al. 2020; Rizzuto et al. 2021)
 - Uncertainty of PI mass gap boundary (Farmer et al. 2020; Belczynski et al. 2020; Costa et al. 2021)
 - Uncertainty of convective overshoot

TABLE I. Parameters of GW190521 according to the NRSur7dq4 waveform model. We quote median values with 90% credible intervals that include statistical errors.

Parameter	
Primary mass	$85^{+21}_{-14}~M_{\odot}$
Secondary mass	$66^{+17}_{-18}~M_{\odot}$
Primary spin magnitude	$0.69^{+0.27}_{-0.62}$
Secondary spin magnitude	$0.73_{-0.64}^{+0.24}$
Total mass	$150^{+29}_{-17}~M_{\odot}$
Mass ratio $(m_2/m_1 \le 1)$	$0.79^{+0.19}_{-0.29}$
Effective inspiral spin parameter (χ_{eff})	$0.08^{+0.27}_{-0.36}$
Effective precession spin parameter (χ_p)	$0.68^{+0.25}_{-0.37}$
Luminosity Distance	5.3 ^{+2.4} _{-2.6} Gpc
Redshift	$0.82^{+0.28}_{-0.34}$
Final mass	$142^{+28}_{-16}~M_{\odot}$
Final spin	$0.72^{+0.09}_{-0.12}$
$P (m_1 < 65 M_{\odot})$	0.32%
log ₁₀ Bayes factor for orbital precession	$1.06\substack{+0.06\\-0.06}$
log ₁₀ Bayes factor for nonzero spins	$0.92\substack{+0.06\\-0.06}$
log ₁₀ Bayes factor for higher harmonics	$-0.38\substack{+0.06\\-0.06}$

Abbott et al. (2020)

Revisit of the PI mass gap

Reconsider Pop III model

- No massive Pop. III stars discovered so far
- Extrapolation from nearby stars to Pop. III stars
 - L model: the same as before, similar to Stern (Brott et al. 2011)
 - M model: similar to GENEC (Ekstrom et al. 2012; Farrell et al. 2020)
- The maximums radius of a $80M_{\odot}$ star
 - M model: ~ $40R_{\odot}$, similar to Farrell et al. (2020)
 - L model: $\sim 3 \times 10^3 R_{\odot}$, similar to Yoon et al. (2012)
- Similar issue is also discussed by Vink et al. (2021)

Convective overshoot

- More effective overshoot
 - Larger He core at the end of MS
 - Larger luminosity in post-MS
 - Larger radius in post-MS
- Effectiveness of overshoot
 - M model: less effective overshoot
 - L model: more effective overshoot

Different radii for

Pop III stars

Both consistent with Pop I/II stars

 Overshoot
 Storatosphere

 Troposphere
 Troposphere

 DV705-22 & MARTIN SETVAK
 EUMETSAT / M.Setvak

Binary population synthesis

• FFs

- L model, the same as previous Pop III ones
- M model, the smaller overshoot
- Initial conditions
 - $f(m_1) \propto m_1^{-1}$ $(10M_{\odot} \le m_1 \le 150M_{\odot})$
 - $\begin{array}{ll} \bullet & f(a) \propto a^{-1} \\ & (10R_\odot \leq m_1 \leq 2000R_\odot) \end{array} \end{array}$

BH mass distribution

• M model

- The maximum mass: $\sim 100 M_{\odot}$
- Stars lose little mass through binary interactions.
- Pop. III stars can form GW190521-like BH-BHs.
- L model
 - The maximum mass: $\sim 50 M_{\odot}$
 - Stars lose their H envelopes through binary interactions
 - No Pop. III stars can form GW190521-like BH-BHs.

Pop III stars can form the PI mass-gap event if overshoot is ineffective.

Tanikawa et al. (2021, MNRAS in press)

Difference from cluster origin

- Even if the M model is correct, no Pop. III binary can form BH-BHs with $100 130M_{\odot}$.
- If GW190521 is Pop. III, the merger rate of BH-BHs with $100 130M_{\odot}$ is much smaller than with $50 100M_{\odot}$.

Summary

- The origins of BH mergers have been under debate.
- We have extended BSE to EMP stars and very massive stars.
- We have investigated Pop III BH mergers.
 - $\sim 30 M_{\odot}$ peak can disappear if Pop III binary stars are only long-period.
 - Pop III IMBH merger rate can be ~ 0.01 yr⁻¹ Gpc⁻³, which may be detected in the near future.
 - Pop III stars can form the PI mass-gap event GW190521 if convective overshoot is not effective.