Theoretical study of the origins of merging binary black holes

Colloquium 2021/06/14 Astronomical Institute, Tohoku University Speaker: <u>Ataru Tanikawa¹</u>

Collaborators: Fujii M. S.¹, Kinugawa T.¹, Kumamoto J.¹, Hijikawa, K.¹, Leigh N. W. C.², Susa H.³, Takahashi K.⁴, Trani A. A.¹, Umeda H.¹, Wang L.¹, Yoshida T.⁵ Institutes: ¹The University of Tokyo, ²University of Concepcion, ³Konan University, ⁴Max Planck Institute, ⁵Kyoto University

Contents

- Gravitational wave (GW) observations and stellar-mass black hole (BH) mergers
- Merging binary BHs formed in open clusters
- Formation scenario of the pair instability (PI) mass gap event GW190521

GWs from BH mergers

- A life of a merging binary BH
 - Born as BH-BH with masses of $\sim 10 M_{\odot}$ and separation of $\lesssim 100 R_{\odot} \lesssim 10$ Gyr ago
 - Shrink the separation through GW radiation, not detectable
 - Large GW emission ≤ 1 sec before their merger, detected by GW telescopes
- GW telescopes sensitive to 10-1000Hz

•
$$f_{\rm gw} \sim \frac{1}{P(r_{\rm sch})} \sim 10^2 \,{\rm Hz} \, \left(\frac{M_{\rm BH-BH}}{10^2 M_{\odot}}\right)^{-1}$$

The first detection: GW150914

- Detected on 14 September 2015
- Merger of $36M_{\odot}$ and $29M_{\odot}$ BHs
- BHs heavier than observed before
 - Metal-poor star?
 - Star clusters?
 - Primordial BH?
- Compact binary BH
 - Merger time: $\leq 10^{10}$ yr
 - Separation: $\leq 10^2 R_{\odot}$ at the formation of the binary BH.
 - Red supergiants: $\gtrsim 10^3 R_{\odot}$

Difficulty of identification

- Large sky localization
- Impossible to find the host galaxy

GW170817, NS merger

• No conclusive electromagnetic counterpart unlike NS mergers

GW170814 (Abbott et al. 2017)

Clues for identification

- BH merger rate density: $R [yr^{-1} Gpc^{-3}]$
- Primary BH mass: $m_1 [M_{\odot}]$
- Secondary BH mass: $m_2 [M_{\odot}]$
 - Mass ratio: $q = m_2/m_1$
- Effective spin: χ_{eff}

$$\chi_{\text{eff}} = \frac{1}{m_1 + m_2} \left(\frac{S_{1,\parallel}}{m_1} + \frac{S_{2,\parallel}}{m_2} \right)$$

• Spin precession: χ_p

$$\chi_{\rm p} = \max\left(\frac{S_{1,\perp}}{m_1^2}, \frac{S_{2,\perp}}{m_2^2}\kappa(q)\right)$$

- Redshift: *z*
- Eccentricity: *e* (not discussed much because of circularization)

• $m_1 \gg m_2$ • $S_1 \neq 0$ • $S_2 = 0$

GW observing runs

- O1: 12 Sep. 2015 to 19 Jan. 2016
 - LIGO-Livingston (L)
 - LIGO-Hanford (H)
- O2: 30 Nov. 2016 to 25 Aug. 2017
 - Virgo (V) joined.
- O3a: 1 Apr. 2019 to 1 Oct. 2019
 - L: 88Mpc to 135Mpc for NS-NS
 - H: 66Mpc to 108Mpc
 - V: 26Mpc to 45Mpc
- O3b: 1 Nov. 2019 to 27 Mar. 2020
 - Not published

Properties of BH mergers

• The local BH merger rate density: $R \sim 23.9^{+14.3}_{-8.6}$ [yr⁻¹ Gpc⁻³]

- Isolated binary: aligned spins
- Star cluster: isotropic spins

 → Mixed with the two channels?
 (But see Bavera et al. 2020)

How about the errors

- Not small
- Mass seems to contain errors of a few 10 %.
 - But, it may not affect the mass distribution.
- Spin seems to be consistent with $\chi_{\text{eff}} = 0$ for all events.
 - We cannot assess if isolated binary evolution or star cluster are correct.
 - At least, BH-BHs have not to have large χ_{eff} .

Abbott et al. (2020, arXiv:2010.14527)

Peculiar events

- GW190412
 - $q \sim 0.25 \ (m_1 = 31.7^{+3.6}_{-3.5} M_{\odot}, m_2 = 8.0^{+0.9}_{-0.7} M_{\odot})$
 - Typical BH mergers: $q \sim 1$
- GW190814
 - $m_1 = 23.2^{+1.0}_{-0.9} M_{\odot}$
 - $m_2 = 2.59^{+0.08}_{-0.08} M_{\odot}$
 - BH-BH, BH-NS, or other?
- GW190521 (later)

Our study

- There is no confirmed formation scenario.
- More than one formation scenario may be correct.
- We make predictions of BH merger properties.
 - Open clusters
 - Pop III binary stars

Merging binary BHs formed in open clusters

Kumamoto J.

Trani A. A.

Open clusters

- Open clusters
 - $M_{\rm tot} \sim 10^3 10^4 M_{\odot}$
 - $T_{\text{life}} \sim 100 \text{ Myr}$
- Globular cluster
 - $M_{\rm tot} \sim 10^5 10^6 M_{\odot}$
 - $T_{\text{life}} \gtrsim 10 \text{ Gyr}$
- Why open clusters?
 - Forming currently
 - Many formed previously

Promising formation sites of merging binary BHs

Open cluster (Pleiades)

3

Globular cluster (M15)

5

 $\log (M/M_{\odot})$

6

7

Fall, Zhang (2001)

Methods

- NBODY6++GPU code
- N-body simulation

$$\frac{d^{2}\vec{r}_{i}}{dt^{2}} = \sum_{j}^{N} \frac{Gm_{j}}{\left|\vec{r}_{j} - \vec{r}_{i}\right|^{3}} \left(\vec{r}_{j} - \vec{r}_{i}\right)$$

- Single star evolution
 - Main sequence → Giant (→ Helium star) → BH (Hurley et al. 2000)
 - Stellar wind mass loss (Belczynski et al. 2010)
 - Supernova model (Belczynski et al. 2002)
- Binary star evolution (Hurley et al. 2002)
 - Tidal interaction, *common envelope*, stable mass transfer, magnetic braking, etc.
- Initial conditions
 - $M_{\rm cl,tot} \sim 2500 M_{\odot}, \rho_{\rm hm} \sim 10^4 \ M_{\odot} \ {\rm pc}^{-3}$
 - Kroupa's IMF ($0.08M_{\odot} < m_* < 150M_{\odot}$)
 - $Z = 0.1, 0.25, 0.5, 1Z_{\odot}$
 - Several 100 clusters for each metallicity

Formation channels

- High metallicity $(Z = Z_{\odot})$
 - Dynamical formation of merging binary BHs
 - Similar to globular clusters
- Low metallicity ($Z < Z_{\odot}$)
 - Dynamical formation of mainsequence binary, and orbital shrink through common envelope
 - Similar to isolated binary evolution
- Clue to identify BH-BH origin?

Kumamoto et al. (2019)

- Dynamical formation of BHs
 - $Z = Z_{\odot}$: binary BHs compact, because of low mass ($\leq 10M_{\odot}$)
 - $Z < Z_{\odot}$: binary BHs not compact, because of high mass ($\geq 10M_{\odot}$)
- Common envelope
 - $Z = Z_{\odot}$: no envelope because of strong stellar wind
 - $Z < Z_{\odot}$: sufficient envelope because of weak stellar wind

Estimate of BH merger rate

- N-body results
 - The number of merging binary BHs
 - *m*₁, *m*₂, *a*, *e*
- Star formation history
 - Total star formation rate (Madau, Fragos 2017)
 - Cosmic evolution of metallicity distribution (Chruslinska, Nelemans 2019)
 - Cluster mass fraction: 20%

Mass distribution

- $R \sim 70 \text{ yr}^{-1} \text{ Gpc}^{-3}$
- Consistent with GW observations, at least for $\leq 40M_{\odot}$
- Require $Z < 0.1 Z_{\odot}$ open clusters, and more sophisticated initial conditions for $\gtrsim 40 M_{\odot}$

Spin distribution

- Spin generated through tidal interactions during BH progenitors (Kushnir et al. 2016; Hotokezaka, Piran 2017)
- 90% zero spin, 10% nonnegligible spin, 0% negative spin
- Negative correlation between mass and spin

Spin misalignment

- 10 % of merging BHs can interaction with another BH before they merge.
- Their spins can be misaligned through single close encounter in open clusters.
- Negative spin, but small fraction

Trani et al. (2021, MNRAS, 504, 910)

Pair instability mass gap event: GW190521

GW190521

- Merger of $85^{+21}_{-14}M_{\odot}$ and $66^{+17}_{-18}M_{\odot}$ BHs
- The primary BH has only a 0.32% probability of being below $65M_{\odot}$.
- Pair instability mass gap: $40 130M_{\odot}$
- Possible scenarios
 - Cluster origins (Rodriguez et al. 2019; Di Carlo et al. 2020; Tagawa et al. 2020; Fragione et al. 2020; Rizzuto et al. 2021)
 - Uncertainty of PI mass gap boundary (Farmer et al. 2020; Belczynski et al. 2020; Costa et al. 2021)
 - Uncertainty of convective overshoot

TABLE I. Parameters of GW190521 according to the NRSur7dq4 waveform model. We quote median values with 90% credible intervals that include statistical errors.

Parameter	
Primary mass	$85^{+21}_{-14}~M_{\odot}$
Secondary mass	$66^{+17}_{-18}~M_{\odot}$
Primary spin magnitude	$0.69_{-0.62}^{+0.27}$
Secondary spin magnitude	$0.73_{-0.64}^{+0.24}$
Total mass	$150^{+29}_{-17}~M_{\odot}$
Mass ratio $(m_2/m_1 \le 1)$	$0.79\substack{+0.19\\-0.29}$
Effective inspiral spin parameter (χ_{eff})	$0.08\substack{+0.27\\-0.36}$
Effective precession spin parameter (χ_p)	$0.68^{+0.25}_{-0.37}$
Luminosity Distance	$5.3^{+2.4}_{-2.6}$ Gpc
Redshift	$0.82\substack{+0.28\\-0.34}$
Final mass	$142^{+28}_{-16}~M_{\odot}$
Final spin	$0.72\substack{+0.09\\-0.12}$
$P(m_1 < 65 M_{\odot})$	0.32%
log ₁₀ Bayes factor for orbital precession	$1.06\substack{+0.06\\-0.06}$
log ₁₀ Bayes factor for nonzero spins	$0.92\substack{+0.06\\-0.06}$
log ₁₀ Bayes factor for higher harmonics	$-0.38\substack{+0.06\\-0.06}$

Abbott et al. (2020)

Pair instability (PI) mass gap

- Pair instability
 - Gamma-ray absorption in creating electron-position pairs
 - Stellar contraction
 - Runaway nuclear reaction
 - Stellar explosion
- Mass gap
 - Mass range without BHs
 - $40 130 M_{\odot}$ by PI

Many scenarios

Revisit of the PI mass gap

Stellar radius

Population III stars

- Consisting of primordial gas (mostly H and He)
- Born in the high-redshift universe
- Astrophysical importance: stellar nucleosynthesis, reionization, ...
- Top-heavy initial mass function (IMF) predicted theoretically (Omukai, Nishi 1998; Abel et al. 2002; Bromm, & Larson 2004)
- Not yet discovered (Frebel, Norris 2015 for review)

Hosokawa et al. (2011)

Pop III star evolution model

- No massive Pop. III stars discovered so far
- Extrapolation from nearby stars to Pop. III stars
 - L model: similar to Stern (Brott et al. 2011)
 - M model: similar to GENEC (Ekstrom et al. 2012; Farrell et al. 2020)
- The maximums radius of a $80M_{\odot}$ star
 - M model: $\sim 40R_{\odot}$, similar to Farrell et al. (2020)
 - L model: $\sim 3 \times 10^3 R_{\odot}$, similar to Yoon et al. (2012)

Convective overshoot

- More effective overshoot
 - Larger He core at the end of MS
 - Larger luminosity in post-MS
 - Larger radius in post-MS
- Effectiveness of overshoot
 - M model: less effective overshoot
 - L model: more effective overshoot

Different radii for

Pop III stars

Both consistent with Pop I/II stars Overshoot Groep Coracosphere Coracosphere

Numerical setup

- The L and M models
- No stellar wind
- Fryer's rapid model for supernova with pair instability (PI) model like the strong PI of Belczynski et al. (2020).
- No natal kick
- Stellar envelope property in Post-MS phases
 - Radiative: $\log(T_{\text{eff}}) > 3.65$
 - CHeB phase in the original BSE
 - Convective: $\log(T_{\text{eff}}) < 3.65$
 - AGB phase in the original BSE

Initial conditions

- Instantaneous formation of Pop III stars: ~ $10^{13}M_{\odot}$ Gpc⁻³ at $z \sim 10$
 - Consistent with numerically predicted results (Magg et al. 2016; Skinner, Wise 2020; but see Inayoshi et al. 2021)
- Binary fraction: 1 (e.g. Sugimura et al. 2020)
- Primary IMF: $f(m_1) \propto m_1^{-1} (10M_{\odot} \le m_1 \le 150M_{\odot})$
- Mass ratio: $f(q) \propto \text{const} (10M_{\odot}/m_1 \le q \le 1)$
- Semi-major axis: $f(a) \propto a^{-1} (10R_{\odot} \le a \le 2000R_{\odot})$
- Eccentricity: $f(e) \propto e$

BH mass distribution

• M model

- The maximum mass: $\sim 100 M_{\odot}$
- Stars lose little mass through binary interactions.
- Pop. III stars can form GW190521-like BH-BHs.
- L model
 - The maximum mass: $\sim 50 M_{\odot}$
 - Stars lose their H envelopes through binary interactions
 - No Pop. III stars can form GW190521-like BH-BHs.

Pop III stars can form the PI mass-gap event if overshoot is ineffective.

Tanikawa et al. (2021, MNRAS, 505, 2170)

Difference from cluster origin

- Even if the M model is correct, no Pop. III binary can form BH-BHs with $100 130M_{\odot}$.
- If GW190521 is Pop. III, the merger rate of BH-BHs with $100 130M_{\odot}$ is much smaller than with $50 100M_{\odot}$.

Expectations for O4

- After June 2022
- Improved sky localization because of KAGRA joining
 - Electromagnetic counterparts?
- More many BH mergers discovered
 - The presence of $100 130M_{\odot}$ mass gap
 - Intermediate mass BH ($\gtrsim 100 M_{\odot}$) mergers

Summary

- The origins of BH mergers have been under debate.
- Open clusters can be a promising formation site of merging BH mergers.
- Pop III stars can form the PI mass-gap event GW190521 if convective overshoot is not effective.