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BBH mergers in O1-O3a



The first detection: GW150914
• Detected on 14 September 2015 

• Merger of !  and !  BHs 

• BHs heavier than observed before 

• Metal-poor star? 

• Star clusters? 

• Primordial BH? 

• Compact binary BH 

• Merger time: !  

• Separation: !  at the 
formation of the binary BH. 

• Red supergiants: !

36M⊙ 29M⊙

≲ 1010 yr

≲ 102R⊙

≳ 103R⊙

Abbott et al. (2016)

Casares et al. (2017)
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Many formation scenarios

Belczynski et al. (2020) Kinugawa et al. (2014); 
Inayoshi et al. (2017)

Isolated binary stars

!103R⊙ → 10R⊙

Keep !  stellar 
radii, and separation

∼ 10R⊙

Pop II Pop III

Metal poor → weak stellar 
wind → massive BH

Star cluster

• Metal poor, and 
repeated BH mergers 

• !  after BH 
formation
∞ → 10R⊙

Di Carlo et al. (2021)



From O1/O2 to O3a
• Sensitivity (BNS range) 

• LIGO-H: !  

• LIGO-L: !  

• Virgo: !  

• Virgo joining 

• Partial → Full 

• Detection 

• 1 per 100 days → 1 per week 

• !  →!  published events

90Mpc → 135Mpc

80Mpc → 108Mpc

25Mpc → 45Mpc

10 ∼ 50

BNS range (O2) BNS range (O3a)

Abbott et al. (2019)
Abbott et al. (2021)

Abbott et al. (2021)

Abbott et al. (2021)



Statistics: Primary BH mass
• The global maximum at !  

• The lower mass gap: !  

• Consistent with X-ray 
observations (Farr et al. 2011) 

• The second peak at !  

• Cliff or break? (O1/O2) 

• Break (O1/O2/O3a)

∼ 8M⊙

≲ 5M⊙

∼ 40M⊙
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Statistics: BH spin
• Effective spin: 

!  

• Spin precession:!  

• Multiple origins? 

• Isolated binary: positive spins 

• Star cluster: isotropic spins 

• Note 

• !  BH natal kicks required for 
negative !  from isolated binary 

• Observational errors may smear out the 
sharp peak at ! .

χeff =
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m2
2
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≳ 500 km/s
χeff

χeff = 0

⃗S 1/m1
χeff

χp

• !  
• !  
• !

m1 ≫ m2
S1 ≠ 0
S2 = 0

χeff χp

O1/O2/O3a (Abbott et al. 2021)

Bavera et al. (2020)



Distinct event: GW190412
• Mass ratio !  

• GW190412: !  

• ! , !  

• Other BBHs: !  

• Spins: ! , ! , !  

• Isolated binary 

• Its !  and !  are not explained. 

• Star cluster 

• High-metallicity clusters 

• 3rd generation BHs

q( = m2/m1)

q ∼ 0.25

m1 ∼ 30.1M⊙ m2 ∼ 8.3M⊙

q ∼ 1

χeff ∼ 0.25 χp ∼ 0.31 χ1 ∼ 0.44

χp χ1

Isolated binary 
(Olejak et al. 2020)

High-metallicity cluster 
(Rodriguez et al. 2020)



Distinct event: GW190814
• Masses 

• !  

• !  

• BH-BH, BH-NS, or other? 

• Difficult to be explained by the 
current population synthesis and 
star cluster simulations 

• Fryer’s rapid supernova model 
adopted 

• No NS/BH in the range of 
!

m1 = 23.2+1.0
−0.9M⊙

m2 = 2.59+0.08
−0.08M⊙

2 − 5M⊙
Fryer et al. (2012)

No BH/NS (the lower mass gap)



GW190521 : the pair 
instability mass gap event



Distinct event: GW190521
• ! , !  

• Pair instability (the higher) mass 
gap: !  

• The break confirmed

m1 = 85+21
−14M⊙ m2 = 66+17

−18M⊙

40 − 130M⊙

Abbott et al. (2021)

Abbott et al. (2020)

Pair instability (PI) mass gap

40 ≲ Mc,He /M⊙ ≲ 60

60 ≲ Mc,He /M⊙ ≲ 130

Mbh /M⊙ ∼ 40

No remnant

Partial disruption

Complete disruption

Mc,He /M⊙ ≳ 130

Direct collapse

Mbh /M⊙ ≳ 130

Mc,He /M⊙ ≲ 40

Core collapse

Mbh /M⊙ ≲ 40

Mzams ≳ 80M⊙

Z ≳ 0.1Z⊙

Strong 
stellar 
winds



Star cluster scenario
40M⊙ 40M⊙

80M⊙ 70M⊙

150M⊙

GW190521

N/Ntotal

10−3

10−2

10−1

0 50 100 150
m1 + m2 [M⊙]

Globular clusters (Rodriguez et al. 2019)

m1 [M⊙] m2 [M⊙]

Open clusters (Santoliquido et al. 2020)

See also AGN disks (Tagawa et al. 2020)



Uncertainty in the PI mass gap
• Large C/O at the end of helium core burning phase 

• Sufficient carbon burning at the central and off-
center regions 

• Onset of convection above the carbon burning 
shell 

• Homogeneous contraction prevented by the 
convection 

• No explosive oxygen burning

Farmer et al. (2020) 
see also Costa et al. (2021)

Mass gap 
( ! )40 − 130M⊙

Mass gap 
( ! )90 − 180M⊙

0.36 1.0 2.74

Farmer et al. (2020) 
see also Takahashi (2018) Belczynski (2020)



Uncertainty in the mass estimate
• Different priors for GW190521 

• Avoiding of the pair instability 
mass gap 

• ! , !  

• Pop III BBHs 

• !  
comparable to the GW190521-
like event rate 

• GW190521 may be Pop III 
origin.

m1 > 130M⊙ m2 < 40M⊙

∼ 0.01 yr−1 Gpc−3

Fishbach, Holz (2020) Nitz, Capano (2021)

Results of the main paper Another results

Tanikawa et al. (2021, ApJ, 910, 30)



One-armed spiral-shape instability

Shibata, Kiuchi, Fujibayashi, Sekiguchi (2021)

GW190521 (Abbott et al. 2020)

EM counterparts?



Our study: 
Isolated binary scenario



Our stand point
• Primary BH mass distribution including GW190521 

• GW190512 as the pair instability mass gap event 

• The standard pair instability mass gap ( ! ) 

• Isolated binary evolution

40 − 130M⊙



Belczynski et al. (2016)

Spera, Mapelli (2017)

Revisit of the PI mass gap

Weak stellar 
wind

Mc,He ≲ 40M⊙

Me,H ≳ 50M⊙

No PPI/PISN

Mbh ∼ 90M⊙

Mzams ∼ 90M⊙

Z ≪ 0.1Z⊙

Single star evolution Binary star evolution

Me,H ≳ 50M⊙
Mc,He ≲ 40M⊙

Mc,He ≲ 40M⊙

Mbh ≲ 40M⊙

Mzams ∼ 90M⊙
∼ 100R⊙

• !  
• !  
• !

Mtot ∼ 80M⊙
Mc ∼ 40M⊙
R ≳ 103R⊙

Single star can form PI mass gap 
BH if it has massive envelope.



Stellar radius

Me,H ≳ 50M⊙
Mc,He ≲ 40M⊙

Mc,He ≲ 40M⊙

Mbh ≲ 40M⊙

Mzams ∼ 90M⊙
∼ 100R⊙

Mbh ∼ 90M⊙

Me,H ≳ 50M⊙
Mc,He ≲ 40M⊙

R ≲ 100R⊙R ≳ 1000R⊙

Can a star keep its 
radius !  ?≲ 100R⊙



Population III stars
• Consisting of primordial gas 

(mostly H and He) 

• Born in the high-redshift universe 

• Astrophysical importance: stellar 
nucleosynthesis, reionization, … 

• Top-heavy initial mass function 
(IMF) predicted theoretically 
(Omukai, Nishi 1998; Abel et al. 
2002; Bromm, & Larson 2004) 

• Not yet discovered (Frebel, Norris 
2015 for review)

Hosokawa et al. (2011)



Pop III star evolution model
• No massive Pop. III stars discovered so 

far 

• Extrapolation from nearby stars to Pop. 
III stars 

• L model: similar to Stern  (Brott et 
al. 2011) 

• M model: similar to GENEC 
(Ekstrom et al. 2012; Farrell et al. 
2020) 

• The maximums radius of a !  star 

• M model: ! , similar to Farrell 
et al. (2020) 

• L model: ! , similar to 
Yoon et al. (2012)

80M⊙

∼ 40R⊙

∼ 3 × 103R⊙

80M⊙

40M⊙

20M⊙

10M⊙

103R⊙102R⊙101R⊙ 104R⊙

Two Pop. III 
models

Yoshida et al. (2019)
L model M model



Convective overshoot
• More effective overshoot 

• Larger He core at the end of 
MS 

• Larger luminosity in post-MS 

• Larger radius in post-MS 

• Effectiveness of overshoot 

• M model: less effective 
overshoot 

• L model: more effective 
overshoot

Troposphere

StoratosphereOvershoot

Radiative envelope

Convective core 
(Progenitor of He core)

Convective 
overshoot

Both consistent 
with Pop I/II stars

Different radii for 
Pop III stars



Numerical setup
• The L and M models 

• No stellar wind 

• Fryer’s rapid model for supernova with 
pair instability (PI) model like the 
strong PI of Belczynski et al. (2020). 

• No natal kick 

• Stellar envelope property in Post-MS 
phases 

• Radiative: !  

• CHeB phase in the original BSE 

• Convective: !  

• AGB phase in the original BSE

log(Teff) > 3.65

log(Teff) < 3.65
Radiative (blue 
supergiants)

Convective (red 
supergiants)

Pulsational PI

PISN

Mass gap 
BH



Initial conditions
• Instantaneous formation of Pop III stars: !  at !  

• Consistent with numerically predicted results (Magg et al. 2016; 
Skinner, Wise 2020; but see Inayoshi et al. 2021) 

• Binary fraction: 1 (e.g. Sugimura et al. 2020) 

• Primary IMF: !  

• Mass ratio: !  

• Semi-major axis: !  

• Eccentricity: !

∼ 1013M⊙Gpc−3 z ∼ 10

f(m1) ∝ m−1
1 (10M⊙ ≤ m1 ≤ 150M⊙)

f(q) ∝ const (10M⊙/m1 ≤ q ≤ 1)

f(a) ∝ a−1 (10R⊙ ≤ a ≤ 2000R⊙)

f(e) ∝ e Hirano et al. (2015)

Pop III IMF



BH mass distribution
• M model 

• The maximum mass: !  

• Stars lose little mass through binary 
interactions. 

• Pop. III stars can form GW190521-like 
BH-BHs. 

• L model 

• The maximum mass: !  

• Stars lose their H envelopes through binary 
interactions 

• No Pop. III stars can form GW190521-like 
BH-BHs.

∼ 100M⊙

∼ 50M⊙ M model

Pop III stars can form the PI mass-gap 
event if overshoot is ineffective. Tanikawa et al. (2021, MNRAS, 505, 2170)



Expectation for O4



Identification of BBH origins
• Even if the M model is correct, no 

Pop. III binary can form BBHs 
with ! . 

• If GW190521 is Pop. III, the 
merger rate of BBHs with 
!  is much smaller 
than with ! .

100 − 130M⊙

100 − 130M⊙
50 − 100M⊙

∼ 50M⊙

∼ 130M⊙

Usual BHs

Above PISN

Primary BH mass

R
at

e

GW190521

BHs in star clusters

∼ 100M⊙ ∼ 130M⊙

∼ 50M⊙

Usual BHs
Pop. III BHs

Above PISN

R
at

e

GW190521

Another 
mass gap



IMBH mergers
• Pop III stars can form many massive 

stars with ! . 

• Such stars can overcome pair 
instability, and form IMBHs with 
! . 

• The IMBH merger rate is 
!  insensitive to 
Pop III initial conditions and stellar 
wind models. 

• The current upper limit of IMBH 
mergers is !  
(LVK, arXiv:2105.15120), slightly 
larger than the Pop III IMBH merger 
rate. 

• IMBHs may be detected in O4.

≳ 100M⊙

≳ 100M⊙

∼ 0.01 yr−1 Gpc−3

∼ 0.056 yr−1 Gpc−3

BBHs
Mass gaps

IMBHs

Tanikawa et al. (2021, ApJ, 910, 30)

Pop III BBH 
mass distribution



EM counterparts



BH-LCs as BBH progenitors
• Non BBH progenitors: 
!  

• BBH progenitors: 
!  

• The total Fraction: 
!  

• High-mass X-ray binary 

• !  

• !  

• !

∼ 4.4 × 109 [Gpc−3]

∼ 1.5 × 107 [Gpc−3]

∼ 0.34 %

P ≲ 1 day

∼ 2.4 × 106 [Gpc−3]

∼ 0.54 ( Mlocal

1012M⊙ ) ( ρuniverse

3 ⋅ 10−31gcm−3 )
−1



BH formation rate
• BH formation rate: 
!  

• Much larger than the BBH merger 
rate ( ! ) 

• Difficult to say that it is a 
progenitor of a BBH even if it is 
discovered. 

• !  BH formation rate: 
!  

• GWs like GW190521? (Shibata, 
Kiuchi, Fujibayashi, Sekiguchi 
2021) 

• Roughly consistent with the 
GW190521-like events?

∼ 104 [yr−1 Gpc−3]

∼ 20 [yr−1 Gpc−3]

≥ 50 M⊙
∼ 1 [yr−1 Gpc−3]

My model

GW190521 (Abbott et al. 2020)
BH+disk system



Summary
• !  BBH mergers have been discovered until O3a. 

• The BH mass distribution becomes clear, but the BH spin 
distribution seems to contain large errors. 

• The pair instability mass gap event GW190521 has great impacts 
on suggested formation scenarios. 

• The M model with ineffective convective overshoot can reproduce 
the BH mass distribution including the mass gap. 

• We expect another mass gap ( ! ) and IMBH merger in 
O4. 

• EM counterparts are difficult, but there are several possibilities.

∼ 50

100 − 130M⊙


