Binary black hole mergers

J-GEM Kick-off workshop 2021/07/02 Speaker: <u>Ataru Tanikawa</u>¹

Collaborators: Fujii M. S.¹, Hosokawa T.², Kinugawa T.¹, Kumamoto J.¹, Hijikawa K.¹, Omukai K.³, Leigh N. W. C.⁴, Susa H.⁵, Takahashi K. ⁶, Trani A. A.¹, Umeda H.¹, Wang L.¹, Yoshida T.² Institutes: ¹The University of Tokyo, ²Kyoto University, ³Tohoku University, ⁴University of Concepcion, ⁵Konan University, ⁶Max Planck Institute

Contents

- Binary black hole (BBH) mergers in O1-O3a
- GW190521: the pair instability mass gap event
- Our study: Isolated binary scenario
- Expectation for O4
- Electromagnetic (EM) counterparts

BBH mergers in O1-O3a

The first detection: GW150914

- Detected on 14 September 2015
- Merger of $36M_{\odot}$ and $29M_{\odot}$ BHs
- BHs heavier than observed before
 - Metal-poor star?
 - Star clusters?
 - Primordial BH?
- Compact binary BH
 - Merger time: $\leq 10^{10}$ yr
 - Separation: $\leq 10^2 R_{\odot}$ at the formation of the binary BH.
 - Red supergiants: $\gtrsim 10^3 R_{\odot}$

From O1/O2 to O3a

- Sensitivity (BNS range)
 - LIGO-H: 90Mpc \rightarrow 135Mpc
 - LIGO-L: $80Mpc \rightarrow 108Mpc$
 - Virgo: $25Mpc \rightarrow 45Mpc$
- Virgo joining
 - Partial \rightarrow Full
- Detection
 - 1 per 100 days \rightarrow 1 per week
 - $10 \rightarrow \sim 50$ published events

Statistics: Primary BH mass

- The global maximum at $\sim 8 M_{\odot}$
 - The lower mass gap: $\leq 5M_{\odot}$
 - Consistent with X-ray observations (Farr et al. 2011)
- The second peak at $\sim 40 M_{\odot}$
 - Cliff or break? (O1/O2)
 - Break (O1/O2/O3a)

• Note

O1/O2/O3a (Abbott et al. 2021)

Distinct event: GW190412

- Mass ratio $q(=m_2/m_1)$
 - GW190412: *q* ~ 0.25
 - $m_1 \sim 30.1 M_{\odot}, m_2 \sim 8.3 M_{\odot}$
 - Other BBHs: $q \sim 1$
- Spins: $\chi_{\text{eff}} \sim 0.25, \chi_{\text{p}} \sim 0.31, \chi_{1} \sim 0.44$
- Isolated binary
 - Its χ_p and χ_1 are not explained.
- Star cluster
 - High-metallicity clusters
 - 3rd generation BHs

Distinct event: GW190814

- Masses
 - $m_1 = 23.2^{+1.0}_{-0.9} M_{\odot}$
 - $m_2 = 2.59^{+0.08}_{-0.08} M_{\odot}$
 - BH-BH, BH-NS, or other?
- Difficult to be explained by the current population synthesis and star cluster simulations
 - Fryer's rapid supernova model adopted
 - No NS/BH in the range of $2 5M_{\odot}$

GW190521 : the pair instability mass gap event

Distinct event: GW190521

Star cluster scenario

See also AGN disks (Tagawa et al. 2020)

Uncertainty in the PI mass gap

- Large C/O at the end of helium core burning phase
- Sufficient carbon burning at the central and offcenter regions
- Onset of convection above the carbon burning shell
- Homogeneous contraction prevented by the convection
- No explosive oxygen burning

Farmer et al. (2020) see also Takahashi (2018)

Belczynski (2020)

Uncertainty in the mass estimate

- Different priors for GW190521
 - Avoiding of the pair instability mass gap
 - $m_1 > 130 M_{\odot}, m_2 < 40 M_{\odot}$
- Pop III BBHs
 - $\sim 0.01 \text{ yr}^{-1} \text{ Gpc}^{-3}$ comparable to the GW190521like event rate
 - GW190521 may be Pop III origin.

Tanikawa et al. (2021, ApJ, 910, 30)

One-armed spiral-shape instability

GW190521 (Abbott et al. 2020)

Our study: Isolated binary scenario

Our stand point

- Primary BH mass distribution including GW190521
- GW190512 as the pair instability mass gap event
- The standard pair instability mass gap $(40 130M_{\odot})$
- Isolated binary evolution

Revisit of the PI mass gap

Stellar radius

Population III stars

- Consisting of primordial gas (mostly H and He)
- Born in the high-redshift universe
- Astrophysical importance: stellar nucleosynthesis, reionization, ...
- Top-heavy initial mass function (IMF) predicted theoretically (Omukai, Nishi 1998; Abel et al. 2002; Bromm, & Larson 2004)
- Not yet discovered (Frebel, Norris 2015 for review)

Hosokawa et al. (2011)

Pop III star evolution model

- No massive Pop. III stars discovered so far
- Extrapolation from nearby stars to Pop. III stars
 - L model: similar to Stern (Brott et al. 2011)
 - M model: similar to GENEC (Ekstrom et al. 2012; Farrell et al. 2020)
- The maximums radius of a $80M_{\odot}$ star
 - M model: $\sim 40R_{\odot}$, similar to Farrell et al. (2020)
 - L model: $\sim 3 \times 10^3 R_{\odot}$, similar to Yoon et al. (2012)

Convective overshoot

- More effective overshoot
 - Larger He core at the end of MS
 - Larger luminosity in post-MS
 - Larger radius in post-MS
- Effectiveness of overshoot
 - M model: less effective overshoot
 - L model: more effective overshoot

Different radii for

Pop III stars

Both consistent with Pop I/II stars

 Overshoot
 Storatosphere

 Troposphere
 Troposphere

 DV705-22 & MARTIN SETVAK
 EUMETSAT / M.Setvak

Numerical setup

- The L and M models
- No stellar wind
- Fryer's rapid model for supernova with pair instability (PI) model like the strong PI of Belczynski et al. (2020).
- No natal kick
- Stellar envelope property in Post-MS phases
 - Radiative: $\log(T_{\text{eff}}) > 3.65$
 - CHeB phase in the original BSE
 - Convective: $\log(T_{\text{eff}}) < 3.65$
 - AGB phase in the original BSE

Initial conditions

- Instantaneous formation of Pop III stars: ~ $10^{13}M_{\odot}$ Gpc⁻³ at $z \sim 10$
 - Consistent with numerically predicted results (Magg et al. 2016; Skinner, Wise 2020; but see Inayoshi et al. 2021)
- Binary fraction: 1 (e.g. Sugimura et al. 2020)
- Primary IMF: $f(m_1) \propto m_1^{-1} (10M_{\odot} \le m_1 \le 150M_{\odot})$
- Mass ratio: $f(q) \propto \text{const} (10M_{\odot}/m_1 \le q \le 1)$
- Semi-major axis: $f(a) \propto a^{-1} (10R_{\odot} \le a \le 2000R_{\odot})$
- Eccentricity: $f(e) \propto e$

Pop III IMF

BH mass distribution

• M model

- The maximum mass: $\sim 100 M_{\odot}$
- Stars lose little mass through binary interactions.
- Pop. III stars can form GW190521-like BH-BHs.
- L model
 - The maximum mass: $\sim 50 M_{\odot}$
 - Stars lose their H envelopes through binary interactions
 - No Pop. III stars can form GW190521-like BH-BHs.

Pop III stars can form the PI mass-gap event if overshoot is ineffective.

Tanikawa et al. (2021, MNRAS, 505, 2170)

Expectation for O4

Identification of BBH origins

- Even if the M model is correct, no Pop. III binary can form BBHs with $100 130M_{\odot}$.
- If GW190521 is Pop. III, the merger rate of BBHs with $100 130M_{\odot}$ is much smaller than with $50 100M_{\odot}$.

IMBH mergers

- Pop III stars can form many massive stars with $\gtrsim 100 M_{\odot}$.
- Such stars can overcome pair instability, and form IMBHs with $\gtrsim 100 M_{\odot}$.
- The IMBH merger rate is
 ~ 0.01 yr⁻¹ Gpc⁻³ insensitive to
 Pop III initial conditions and stellar
 wind models.
- The current upper limit of IMBH mergers is ~ 0.056 yr⁻¹ Gpc⁻³ (LVK, arXiv:2105.15120), slightly larger than the Pop III IMBH merger rate.
- IMBHs may be detected in O4.

Tanikawa et al. (2021, ApJ, 910, 30)

EM counterparts

BH-LCs as BBH progenitors

- Non BBH progenitors: $\sim 4.4 \times 10^9 [\text{Gpc}^{-3}]$
- BBH progenitors: $\sim 1.5 \times 10^7 [\text{Gpc}^{-3}]$
- The total Fraction: $\sim 0.34 \%$
- High-mass X-ray binary
 - $P \lesssim 1 \text{ day}$
 - ~ $2.4 \times 10^{6} \, [\text{Gpc}^{-3}]$

• ~ 0.54 $\left(\frac{M_{\text{local}}}{10^{12}M_{\odot}}\right) \left(\frac{\rho_{\text{universe}}}{3 \cdot 10^{-31} \text{gcm}^{-3}}\right)^{-\frac{1}{1-5}}$

BH formation rate

- BH formation rate: $\sim 10^4 [yr^{-1} \text{ Gpc}^{-3}]$
 - Much larger than the BBH merger rate ($\sim 20 [yr^{-1} Gpc^{-3}]$)
 - Difficult to say that it is a progenitor of a BBH even if it is discovered.
- $\geq 50 M_{\odot}$ BH formation rate: ~ 1 [yr⁻¹ Gpc⁻³]
 - GWs like GW190521? (Shibata, Kiuchi, Fujibayashi, Sekiguchi 2021)
 - Roughly consistent with the GW190521-like events?

Summary

- ~ 50 BBH mergers have been discovered until O3a.
- The BH mass distribution becomes clear, but the BH spin distribution seems to contain large errors.
- The pair instability mass gap event GW190521 has great impacts on suggested formation scenarios.
- The M model with ineffective convective overshoot can reproduce the BH mass distribution including the mass gap.
- We expect another mass gap $(100 130M_{\odot})$ and IMBH merger in O4.
- EM counterparts are difficult, but there are several possibilities.