Formation of merging binary black holes from isolated binary stars with all metallicities

Genesis Group A Area Workshop 2022 Speaker: Ataru Tanikawa (University of Tokyo) Collaborators: M. S. Fujii, K. Hijikawa, T. Hosokawa, T. Kinugawa, J. Kumamoto, K. Omukai, H. Susa, K. Takahashi, A. A. Trani, H. Umeda, L. Wang, T. Yoshida AT, Yoshida, Kinugawa, Trani, Hosokawa, Susa, Omukai (2021, arXiv:2110.10846, ApJ accepted)

Trani, AT, Fujii, Leigh, Kumamoto (2021, MNRAS, 910, 919 Kumamoto, Fujii, AT (2020, MNRAS, 495, 4268)

Discovery of BH mergers

- Rapid growth of the number of BH mergers discovered by GW observations
 - 2015: The first BH merger (Abbott et al. 2016)
 - 2021: The number of BH mergers
 ~ 80 (Abbott et al. 2021)
- BH mass
 - X-ray observed BHs: $\sim 10 M_{\odot}$
 - GW observed BHs: $\sim 30 M_{\odot}$
- Difference of origins ?
 - Metal-poor binary stars, dense star clusters, galactic centers, PBHs, ...

Isolate binary scenario

Belczynski et al.; Eldridge et al.; Giacobbo et al.; Kinugawa et al.; Kruckow et al.; Stevenson et al.; Tanikawa et al.;

Metallicity

- Metallicity dependence is a reasonable solution of BH mass difference between X-ray and GW observed BHs.
- Stellar winds
 - Metal-poor \rightarrow weak stellar winds \rightarrow massive BHs
 - (Heger et al. 2003; Mapelli et al. 2009; Belczynski et al. 2010; Spera et al. 2015)
- IMF
 - Top-light for $Z/Z_{\odot} \gtrsim 10^{-5}$
 - Top-heavy for $Z/Z_{\odot} \lesssim 10^{-5}$
 - (Bromm, Larson 2004; Omukai et al. 2005; Schneider et al. 2006; Maio et al. 2010)

Chon et al. (2021)

Pair instability (PI) Mass gap

Our study

- Merging binary BHs from all the metallicities (Pop I, II, III, EMP stars) by the world's first binary population synthesis calculations
 - Only Pop I/II: BSE (Hurley et al. 2002); binary_c (Izzard et al. 2009); SeBa (Toonen et al. 2012); BPASS (Eldridge, Stanway 2016); MOBSE (Giacobbo et al. 2018); COSMIC (Breivik et al. 2020); COMPAS (Team COMAS et al. 2021)
 - Pop I/II/III: BSE+Pop III (Kinugawa et al. 2020); StarTrack (Belczynski 2002; 2017, but see Inayoshi et al. 2017)
- Pop I: $Z/Z_{\odot} > 0.16$, Pop II: $10^{-3} < Z/Z_{\odot} \le 0.16$, EMP: $0 < Z/Z_{\odot} \le 10^{-3}$, Pop III: $Z/Z_{\odot} = 0$

Binary population synthesis

Binary evolution model

- Metallicity
 - $0,10^{-6},10^{-4},10^{-2},0.025,0.05,0.1Z_{\odot}$ (Tanikawa et al. 2021)
 - $0.25, 0.5, 1Z_{\odot}$ (Hurley et al. 2000)
- Stellar winds (Belczynski et al. 2010), Supernova model (Fryer et al. 2012; Belczynski et al. 20160), Fallback BH kick (Hobbs et al. 2005; Fryer et al. 2012)
- Wind accretion, tidal interaction, mass transfer, common envelope, gravitational wave radiation... (Hurley et al. 2002)

Initial conditions

- Binary stars
 - Binary number fraction: 50% for all Z
 - Chon's IMF
 - $f(m)dm \propto m^{-2.3}dm \; (Z/Z_{\odot} > 10^{-2})$
 - $f(m)dm \propto m^{-1}dm \ (Z/Z_{\odot} \leq 10^{-6})$
 - Mixture $(10^{-6} < Z/Z_{\odot} \le 10^{-2})$
 - Distributions of mass ratios, periods, and eccentricities (Sana et al. 2012)
- Overall star formation
 - Star formation rate (Madau, Fragos 2017; Skinner, Wise 2020)
 - Average metallicity (Madau, Fragos 2017)
 - Metallicity distribution for non-Pop III: lognorma distribution with $\sigma = 0.35$

Sugimura et al. (2020)

Chon et al. (2021)

Merger rate and mass distribution

- Consistent with the local merger rate
 - Dominance of Pop I/II stars in low-redshift
 universe
 - Dominance of EMP+Pop III stars in highredshift universe
- Consistent with the mass distribution in the local universe
 - $5 20M_{\odot}$: Pop I
 - $20 50M_{\odot}$: Pop II
 - $50 100M_{\odot}$: EMP+Pop III
- All metallicities are required for all BH mergers!

Redshift evolution of the merger rate

Difference from other scenarios

- No BH with $m_1 = 100 130 M_{\odot}$ in the isolated binary scenario
 - $m_1 \lesssim 100 M_{\odot}$: below PISN
 - $m_1 \gtrsim 130 M_{\odot}$: above PISN
- Not true in the other scenarios
- If isolated binary origins are dominant, there should be a sort of "hole" in the range of $m_1 = 100 130 M_{\odot}$
- Merger rate of BHs with $m_1 > 100 M_{\odot}$ can be constrained in the near future
 - The upper limit becomes more stringent from O2 to O3 (Abbott et al. 2021, arXiv: 2105.15120).

Redshift evolution of mass distribution

- $< 20M_{\odot}$: Similar to star formation history
- $20 40M_{\odot}$: no redshift evolution
- > $40M_{\odot}$: Larger with redshift
- PI mass gap $(65 100M_{\odot})$
 - Peat at $z \sim 11$
 - Pop III is dominant in the highredshift universe
- A possible probe for Pop III stars

Difference between isolated binaries and open clusters

- Main processes
 - Metal-poor stars: common envelope evolution
 - Metal-rich stars: dynamical capture
- Merger efficiency: $\eta = N_{\rm BH-BH}/M_{\rm star} [M_{\odot}^{-1}]$
- N-body processes are more effective for lower-mass BHs (see also Wang et al. 2021)

Metallicity dispersion

• Cosmic evolution of metallicity distribution

$$p(z, Z) = (2\pi\sigma_Z)^{-1/2} \exp\left\{-\frac{\left[\log(Z/\overline{Z})\right]^2}{2\sigma_Z^2}\right\}$$

- Average metallicity
 - $\log \overline{Z}/Z_{\odot} = 0.153 0.074z^{1.34}$
- Metallicity dispersion: σ_Z
 - $\sigma_{\rm Z} = 0.35 \rightarrow 0.10$
- A numerical simulation prefers to 0.35 (Chruslinska et al. 2019)
- BH formation in open clusters can be mandatory if the actual metallicity dispersion is smaller than expected by the numerical simulation.

Isolated binary with $\sigma_{\rm Z} = 0.10$

Summary

- Binary population synthesis for binary stars with all the metallicities
- Need all the metallicities Pop I, II, III and EMP stars to reproduce the BH merger rate and mass distribution consistent with the GW observations
- Predict little merging BHs with $m_1 = 100 130M_{\odot}$, verifiable by LIGO, Virgo, and KAGRA in 2020s.
- Predict that the merger rate of BHs with $m_1 \ge 65M_{\odot}$ achieves a peak at $z \sim 11$, verifiable by Einstein Telescope, Cosmic Explorer, and DECIGO in 2030s.
- Suggest that $m_1 \ge 65M_{\odot}$ BH mergers are a probe for Pop III stars.
- Require open-cluster origin BHs if this universe has small metallicity dispersion.