Euclid detectability of pair instability supernovae in binary population synthesis model consistent with merging binary black holes

Komaba colloquium, June 2 2022 Ataru Tanikawa

Tanikawa, Moriya, Tominaga, Yoshida (2022, arXiv:2204.09402)

Gravitational wave

Direct observation by LIGO (2015)

Binary black holes

Origin of binary black holes

Belczynski et al.; Eldridge et al.; Giacobbo et al.; Kinugawa et al.; Kruckow et al.; Stevenson et al.; Tanikawa et al.;

Importance of their origin(s)

- Objects most frequently discovered by GW observations
- Probes for astronomical objects
 - Binary: star formation history, IMF, binary initial condition, stellar evolution, core-collapse supernova, pair instability supernova, supernova kick, etc.
 - Cluster: cluster formation history, cluster initial condition, current dynamical state, etc.
 - Primordial BH: early universe, dark matter, etc.

Localization

Binary black hole

Black hole mass

Pair instability supernovae

Pair instability mass gap

Pair instability mass gap

- GWTC-1 (O1/O2 results) appears to have no $\gtrsim 50 M_{\odot}$ BH.
- This can be explained by PPISN/ PISN effects and the evidence of the isolated binary scenario (Belczynski et al. 2020).

GW190521

GWTC-1 (Abbott et al. 2019)

Cluster origin?

See also AGN disks (Tagawa et al. 2020)

${}^{12}C(\alpha, \gamma){}^{16}O$ reaction rate

Extremely metal poor stars

Our previous study

Tanikawa et al. (2022, ApJ, 910, 30)

Short summary

- The isolated binary scenario still survives.
- We realized that the ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction rate is one of the most important parameters for shaping the BH mass distribution via PISNe, despite that the fiducial and $3-\sigma$ smaller ones can explain GWTC-3 results.
- The PISN event rate should be strongly dependent on the ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction rate.
- We investigated if the PISN detection number depends on the ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction rate by binary population synthesis simulation.

Binary population synthesis

PMS, 96.75 M_☉ PMS, 100.57 M_☉

Initial conditions

Single star evolution model

- Evolution track
 - Hurley's model for $> 0.1Z_{\odot}$
 - Tanikawa's model for $\leq 0.1 Z_{\odot}$
- Belczynski's stellar winds
- Fryer's rapid supernova model with Leung's PISN/PPISN model
- Fallback BH natal kick (265km/s for NS)

Binary star evolution model

- Magnetic braking
- Orbital decay due to gravitational wave
- etc.

Variety of parameters

- Different PISN models
 - Fiducial
 - PPISN: $M_{\rm c,He} = 45 65 M_{\odot}$
 - PISN: $M_{\rm c,He} = 65 135 M_{\odot}$
 - 3-*o*
 - PPISN: N/A
 - PISN: $M_{\rm c,He} = 90 180 M_{\odot}$
- Different maximum masses
 - 150, 300, 600 M_{\odot}

Consistency check

- BH-BH Merger rate
- Primary BH mass distribution

PISN event rate

Solid: type I (hydrogen-poor) PISN, dashed: type II (hydrogen-rich) PISN)

Euclid space telescope

- To be launched 2023 by ESA
 - Postponed because of Soyuz \rightarrow Ariane
- The Sun-Earth L2 (the same as JWST)
- 1.2-m telescope

Observation model

				_			obse	observer-frame years after explosion								
Name	Explosion	Progenitor	Mass		0 22	0.5	1	1.5	2	2.5	5	3	3.5	4]	
R250 ^a	PISN	RSG	$250 \ M_{\odot}$	-	-	$H_{\rm E}$		al.	PIS	N R25 I He13 SL S	50		z = 2 z = 3			
R225 ^{<i>a</i>}	PISN	RSG	$225 \ M_{\odot}$	qe	-			MP.		010					-	
$R200^a$	PISN	RSG	$200 \ M_{\odot}$	gnitu	23			_ II	L.						-	
R175 ^a	PISN	RSG	$175 \ M_{\odot}$	Bma	-			-							-	
R150 ^a	PISN	RSG	$150~M_{\odot}$	ent Al	-					N	WL.	L.			-	
He130 ^a	PISN	WR	$130 \ M_{\odot}$	ppare	24 -	f \ -		╴╨ҝ	K	ĘĮ	- 7	٩t	ē.			
He120 ^{<i>a</i>}	PISN	WR	$120 \ M_{\odot}$	b	-		<i>₹</i>	T I			Į,		ан, н. 1919 - П.		-	
He110 ^{<i>a</i>}	PISN	WR	$110 \ M_{\odot}$		-		M	ا ا	<u>, 199</u>		· ·		ų.	1	-	
He100 ^{<i>a</i>}	PISN	WR	$100 \ M_{\odot}$		25 L 0	200	400	600	80	00	1000	12	200	1400	1600	
He090 ^a	PISN	WR	$90 \ M_{\odot}$	observer-frame days after explosion												
$SLSN^b$	SLSN	-	-	years after start of operation										6		
Euclid Deer	o Fields (EDF	F)		-				· · ·					, ,			
				North p	pole			33	3	3	3	3	3	3	3	
				E	EDFN	_									-	
(and a second sec		South p	oole	reference	e 4	L 3	4	3	4 3	3	4 3	4		
	2		(Art)		EDFS	 image acquisitio 	n									
							5	5	5	5	5	5	5 5	5 5		
					EDFF	-									-	
				Forna Chan	ax (11 dra I	nci. DF)										
Moriy	a et al. (202	22, arXiv:22	04.08727	') ^(nal)	(uru 1	0 200 4	400 60	0 800		1200) 1400	160	0 1800) 2000]	
·								days a	fter sta	rt of o	peratio	on				

PISN detection number

- Few detections \rightarrow Fiducial PISN model
- No detection $\rightarrow 3-\sigma$ PISN model
- 1 detection \rightarrow Ejecta mass estimate required

Caveats

- PISN observation model is based on the fiducial PISN model.
- There is no PISN model with $M_{\rm c,He} = 180 M_{\odot}$.
- PISNe with $M_{c,He} > 130 M_{\odot}$ is assumed to be PISNe with $M_{c,He} = 130 M_{\odot}$.
- PISNe with $M_{c,He} = 180 M_{\odot}$ are possibly more bright than with $M_{c,He} = 130 M_{\odot}$.
- The detection number for $3-\sigma$ models may be larger than our estimate.

Summary

- The isolated binary scenario for binary BHs is still alive.
- Whichever ${}^{12}C(\alpha, \gamma){}^{16}O$ rate we choose.
- The PISN event rate can constrain the ${}^{12}C(\alpha, \gamma){}^{16}O$ rate by Euclid survey.
 - Few detections of type I: the fiducial rate
 - No detection: the $3-\sigma$ smaller rate
 - One detection of type I: mass estimate definitely required
- We need detail observation models for PISNe with the $3-\sigma$ smaller rate.