重星ブラックホール形成過程の

初代星•初代銀河研究会2022 2022年11月徳島大学 谷川衝 (東大駒場)

理論研究

- Innovative Area (FY2017-2021)

Gravitational Wave Physics and Astronomy: Genesis

Contents

- Isolated binary scenario(s) for merging binary BH formation
- How to assess the isolated binary scenario(s)
- BH binary (not binary BH) exploration

Merging binary black holes (BHs)

Masses in the Stellar Graveyard

More massive than EM BHs

The origin of merging binary BHs

Isolated binary

M15 © NASA

Rodriguez et al. (2016); Tanikawa (2013); Kumamoto et al. (2019); Tagawa et al. (2020)

Dense star cluster

Primordial BH

Low spatial resolution

Possible region of a binary black hole merger

Binary neutron star

Utsumi et al. (2017)

Attack on the isolated binary scenario

- The isolated binary scenario
 - A sufficiently large number of BHs \checkmark
 - Mass and spin parameter space limited X
- The dense star cluster scenario
 - A small number of BHs X
 - Wide parameter space of mass and spin \checkmark •

Possibly rejected by only one event

- GW190521: the pair instability mass gap merger ullet
- GW190412: the asymmetric merger
- (GW190814: the lower mass gap merger)

GW190521: the pair instability mass gap event

Pair instability mass gap

Main stream: mass gap shifted upward

Tanikawa et al. (2021, MNRAS, 505, 2170)

Comparison with GW observations

Tanikawa et al. (2022, ApJ, 926, 83)

Prior-dependent BH mass

Fishbach & Holz (2020); see also Nitz & Capano (2021)

The ringdown signal was seen, but the chirp signal was not seen well...

- frequency: ~ 66 Hz
- Damping time: ~ 19 ms

Redshifted mass: $\sim 252 M_{\odot}$ Source mass: $\sim 142 M_{\odot}$

see also Hijikawa et al. (2021)

PISN survey by Euclid telescope

Tanikawa et al. (2022, arXiv:2204.09402)

Multi-band GW observations

Special thanks to A. Trani and L. Wang

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Black Holes v200 2-

LIGO-Virgo-KAGRA | Aaron Geller | Northwestern

BH X-ray binary

HMXB: Subpopulation of merging binary BHs?

Fishbach & Kalogera (2022)

Non-interacting BH binary

BH binaries with longer periods ($\gtrsim 10$ days)

Spectroscopic binary

- NGC 3210 BH (Giesers et al. 2018) √
- LB-1 (Liu et al. 2019) ×
- 2MASS J05215658+4359220 (Thompson et al. 2019) ×
- HR 6819 (Rivinius et al. 2020) ×
- NGC 2004#115 (Lennon et al. 2021) ×
- Unicorn (Jayasinghe et al. 2021) ×
- Giraffe (Jayasinghe et al. 2022) ×
- NGC 1850 BH1 (Saracino et al. 2022) ×
- VFTS 243 (Shenar et al. 2022) √

Rejected by K. El-Badry (BH destroyer)

Gaia: astrometry with spectroscopy

Promising BH candidate

e ID	$ ilde{M} \; [M_\odot]$	$P_{\rm orb}$ [days]	$(a_0 \times d)$ [au]	GoF	$rv_amplitude_robust[km s^{-1}]$	expected RV amplitude	Ve
567040	122 ± 47	1076 ± 12	10.2 ± 1.3	10.3	12.9	674 ± 154	×
143808	119 ± 71	1647 ± 520	13.4 ± 2.2	4.9		358 ± 182	×
301632	11.5 ± 2.5	185.8 ± 0.3	1.44 ± 0.10	0.3		165 ± 20	- 🗸
199296	10.8 ± 1.6	153.9 ± 0.4	1.24 ± 0.06	8.0	20.1	171 ± 10	×
779008	6.7 ± 0.5	1352 ± 45	4.52 ± 0.13	3.1	37.0	50 ± 2	_/_
065984	3.5 ± 2.6	1220 ± 233	3.35 ± 1.13	3.6	18.3	54 ± 14	X

Crisis of the conventional binary evolution model?

Shikauchi et al. (2020, PASJ, 72, 45) \triangleleft Group 1 \leq 1.5-Group 2 Group 3 Group 4 $[^{\odot}M]$ SWm Bol 0.50.0-V -2No BH binary $\log P[\text{yr}]$

Difficult to be formed in an open cluster

El-Badry's BH in an open cluster?

Summary

- The isolated binary scenario(s) can explain not only the BH properties, but also peculiar events like GW190521 and GW190412.
- These scenarios may be constrained by future projects, such as Euclid PISN survey.
- BH binary exploration is providing further information for understanding binary evolution.
- LIGO-Virgo-KAGRA O4 will add much more binary BH population next year.