Gaia BH formation in open star clusters

Ataru Tanikawa

3,2,1: Massive Triples, Binaries and Mergers 2023, Leuven, Belgium Tanikawa et al. (2023, arXiv:2303.05743)

Tanikawa et al. (2023, ApJ, 946, 79)

Conclusions

- Gaia BHs are hard to be formed through isolated binary evolution.
- We found that
- Gaia BHs can be formed in open star clusters more efficiently than in isolated binary stars by at least 2 orders of magnitude.
- Such Gaia BHs have tertiary stars at high probability.

Gaia

Gaia BH1 and BH2

El-Badry et al. (2023a)

BH companion star

El-Badry et al. (2023b)

High α_{ce} is needed

El-Badry et al. (2023a)

Other channels?

- Hierarchical triple systems (El-Badry et al. 2023ab)
- Open star clusters (Tanikawa et al., arXiv:2303.05743; see also Di Carlo et al, arXiv:2306.1312; Rastello et al. arXiv:2306.14679)
Gaia BH1 and BH2 are components in the Galactic disk (El-Badry et al. 2023ab).
\Longrightarrow Impossible in the Galactic globular cluster and the Galactic center

Gaia BH1

Fiducial model

- N-body code: PeTar (Wang et al. 2020)
- Galactic potential: GALPY (Bovy 2012)
- Binary model: BSE (Hurley et al. 2000; Banerjee et al. 2020)
- Initial condition: McLuster (Kupper et al. 2011)
- $100 \times 10^{3} M_{\odot}$ clusters for each $Z=0.02,0.01,0.005$
- Stellar mass density: $\sim 200 M_{\odot} \mathrm{pc}^{-3}$
- Initial binary fraction: 100\%
- Primary IMF: Kroupa (2001)
- Binary conditions: Sana et al. (2012)
- $f\left(m_{2} / m_{1}\right) \propto\left(m_{2} / m_{1}\right)^{-0.1}\left(0.1 \leq m_{2} / m_{1} \leq 1\right)$
- No progenitor of Gaia BHs at the initial time

Parallel tree algorithm \times Algorithmic Regularization

PT search neighbors. cisterng MPI-OpenMP-SIMD
$\mathrm{P}^{3} \mathrm{~T}-\mathrm{kick}\left(\mathrm{H}_{t}\right)$
${ }^{\text {P3}}$ T-dritit $\left(H_{s}\right)$
Torce and velocity kick
MPI-OpenMP-SIMD/GPU
Hermite \& SDAR integrations

百

High formation efficiency of Gaia BHs

Parameters	Values	Remarks
Metallicity (Z)	0.005	
BH mass	$21.4 M_{\odot}$	
Secondary mass	$0.82 M_{\odot}$	MS star
Period	8.3×10^{2} days	
Eccentricity	$0.3-0.8$	Oscillating

- BH mass $\left(\sim 10 M_{\odot}\right) \sqrt{ }$
- Period ($\sim 10^{2}-10^{3}$ day)
- Companion mass $\left(\sim 1 M_{\odot}\right) \sqrt{ }$
- Eccentricity $(\sim 0.5) \sqrt{ }$
- No chemical anomaly $\sqrt{ }$
- Galactic disk component $\sqrt{ }$

Formation efficiency:
$\sim 3.3 \times 10^{-6} M_{\odot}^{-1}$
$\gg 10^{-8} M_{\odot}^{-1}$ (isolated binary)

Additional models

- Open star clusters with $\sim 10^{7} M_{\odot}$ in total
- Initial binary fraction: $0,20,50,100 \%$
- Metallicity: $Z=0.005,0.01,0.02$
- Cluster mass: 500, 1000, $2000 M_{\odot}$
- Stellar mass density: 2, 20, $200 M_{\odot} \mathrm{pc}^{-3}$

Portegies Zwart et al. (2010)

Dependence on initial conditions

- Initial binary fraction (0-100\%):

$$
\cdot \Longrightarrow \sim 3 \times 10^{-6} M_{\odot}^{-1}
$$

- Metallicity ($\mathrm{Z}=0.005-0.02$):

$$
\text { - } \Longrightarrow 3 \times 10^{-6} M_{\odot}^{-1}
$$

- Cluster mass ($500-2000 M_{\odot}$):

$$
\text { - } \Longrightarrow 3 \times 10^{-6} M_{\odot}^{-1} \text { if } \geq 1000 M_{\odot}
$$

- Stellar mass density $\left(2-200 M_{\odot} \mathrm{pc}^{-3}\right)$

$$
\begin{aligned}
& \Rightarrow 3 \times 10^{-6} M_{\odot}^{-1} \text { if } \geq 20 M_{\odot} \mathrm{pc}^{-3} \\
& \sim 3 \times 10^{-6} M_{\odot}^{-1}
\end{aligned}
$$

The number of the Galactic Gaia BHs

$3 \times 10^{-6} M_{\odot}^{-1}$ for clusters with reasonable mass and density

$$
N_{\text {GaiaBH,MW }} \sim 2 \times 10^{4}\left(\frac{\eta}{3 \times 10^{-6}}\right)\left(\frac{M_{\mathrm{MW}}}{6.1 \times 10^{10} M_{\odot}}\right)\left(\frac{f_{\text {cluster }}}{0.1}\right)
$$

Multiplicity of Gaia BHs in simulation

Parameters	Values	Remarks
Metallicity (Z)	0.005	
BH mass	$21.4 M_{\odot}$	
Secondary mass	$0.82 M_{\odot}$	MS star
Period	8.3×10^{2} days	
Eccentricity	$0.3-0.8$	Oscillating
Tertiary mass	$1.59 M_{\odot}$	MS star
Outer period	1.2×10^{6} days	
Outer eccentricity	0.689	
Mutual inclination	$34-59$ deg	Oscillating

Summary

- Gaia BHs are hard to be formed through isolated binary evolution.
- We found that
- Gaia BHs can be formed in open star clusters more efficiently than in isolated binary stars by at least 2 orders of magnitude.
- Such Gaia BHs can be in multiple star systems at a few 10% probability.
- Other objects formed in open star clusters
- Gaia NS: $\sim 0 M_{\odot}^{-1}$
- Gaia BH with WD : $\sim 6 \times 10^{-6} M_{\odot}^{-1}(\sim 2 \times$ Gaia BHs $)$

