Gaia BH formation in open star clusters

Ataru Tanikawa

3,2,1: Massive Triples, Binaries and Mergers 2023, Leuven, Belgium Tanikawa et al. (2023, arXiv:2303.05743) Tanikawa et al. (2023, ApJ, 946, 79)

Conclusions

- Gaia BHs are hard to be formed through isolated binary evolution.
- We found that
 - Gaia BHs can be formed in open star clusters more efficiently than in isolated binary stars by at least 2 orders of magnitude.
 - Such Gaia BHs have tertiary stars at high probability.

Gaia

BH companion star

**==*

Gaia BH1 and BH2

See also Shahaf et al. (2023); Chakrabarti et al. (2023)

High α_{ce} is needed

 $\theta [deg]$

Other channels?

Fiducial model

- N-body code: PeTar (Wang et al. 2020)
- Galactic potential: GALPY (Bovy 2012) •
- Binary model: BSE (Hurley et al. 2000; Banerjee et al. 2020) •
- Initial condition: McLuster (Kupper et al. 2011)
 - $100 \times 10^{3} M_{\odot}$ clusters for each Z = 0.02, 0.01, 0.005
 - Stellar mass density: ~ $200 M_{\odot} \text{pc}^{-3}$
 - Initial binary fraction: 100%
 - Primary IMF: Kroupa (2001)
 - Binary conditions: Sana et al. (2012)
 - $f(m_2/m_1) \propto (m_2/m_1)^{-0.1} (0.1 \le m_2/m_1 \le 1)$
 - No progenitor of Gaia BHs at the initial time

Parallel tree algorithm × Algorithmic Regularization

High formation efficiency of Gaia BHs

Parameters	Values	Remarks
Metallicity (Z)	0.005	
BH mass Secondary mass Period	$21.4M_{\odot}$ $0.82M_{\odot}$ 8.3×10^2 days	MS star
Eccentricity	0.3-0.8	Oscillating

- BH mass ($\sim 10 M_{\odot}$) \checkmark
- Period (~ $10^2 10^3$ day) \checkmark
- Companion mass (~ $1M_{\odot}$) \checkmark
- Eccentricity (~ 0.5) \checkmark
- No chemical anomaly \checkmark
- Galactic disk component •

Formation efficiency: $\sim 3.3 \times 10^{-6} M_{\odot}^{-1}$ $\gg 10^{-8} M_{\odot}^{-1}$ (isolated binary)

Additional models

- Open star clusters with $\sim 10^7 M_{\odot}$ in total
- Initial binary fraction: 0, 20, 50, 100 %
- Metallicity: Z = 0.005, 0.01, 0.02
- Cluster mass: 500, 1000, 2000 M_{\odot} ullet
- Stellar mass density: 2, 20, 200 M_{\odot} pc⁻³

Portegies Zwart et al. (2010)

Dependence on initial conditions

- Initial binary fraction (0-100%):
 - $\implies \sim 3 \times 10^{-6} M_{\odot}^{-1}$
- Metallicity (Z=0.005-0.02):

•
$$\implies 3 \times 10^{-6} M_{\odot}^{-1}$$

- Cluster mass $(500 2000M_{\odot})$:
 - $\implies 3 \times 10^{-6} M_{\odot}^{-1} \text{ if } \ge 1000 M_{\odot}$
- Stellar mass density $(2 200 M_{\odot} \text{ pc}^{-3})$

•
$$\implies 3 \times 10^{-6} M_{\odot}^{-1} \text{ if } \ge 20 M_{\odot} \text{ pc}^{-3}$$

 $\sim 3 \times 10^{-6} M_{\odot}^{-1}$

The number of the Galactic Gaia BHs

 $\left| N_{\text{GaiaBH,MW}} \sim 2 \times 10^4 \left(\frac{\eta}{3 \times 10^{-6}} \right) \left(\frac{M_{\text{MW}}}{6.1 \times 10^{10} M_{\odot}} \right) \left(\frac{f_{\text{cluster}}}{0.1} \right) \right|$

 $3 \times 10^{-6} M_{\odot}^{-1}$ for clusters with reasonable mass and density

Multiplicity of Gaia BHs in simulation

Parameters	Values	Remarks
Metallicity (Z)	0.005	
BH mass Secondary mass Period Eccentricity	$21.4M_{\odot}$ $0.82M_{\odot}$ 8.3×10^2 days 0.3-0.8	MS star Oscillating
Tertiary mass Outer period Outer eccentricity Mutual inclination	$1.59 M_{\odot}$ 1.2×10^{6} days 0.689 34-59 deg	MS star Oscillating

ZLK oscillation during 2Gyr

Summary

- Gaia BHs are hard to be formed through isolated binary evolution. •
- We found that ullet
 - binary stars by at least 2 orders of magnitude.
- Other objects formed in open star clusters •
 - Gaia NS: $\sim 0 M_{\odot}^{-1}$
 - Gaia BH with WD : $\sim 6 \times 10^{-6} M_{\odot}^{-1}$ ($\sim 2 \times \text{Gaia BHs}$)

• Gaia BHs can be formed in open star clusters more efficiently than in isolated

• Such Gaia BHs can be in multiple star systems at a few 10% probability.