Research Gate
Researcher ID
Google Scholar

[122] Zhang, X.-Y., Chen, L.-H., Wang, X.-J., Hanyu, T., Hofmann, A.W., Komiya, T., Nakamura, K., Kato, Y., Zeng, G., Gou, W.-X., Li, W.-Q., 2022. Zinc isotopic evidence for recycled carbonate in the deep mantle. Nature Communications 13, 6085.
[121] Ardoin, L., Broadley, M.W., Almayrac, M., Avice, G., Byrne, D.J., Tarantola, A., Lepland, A., Saito, T., Komiya, T., Shibuya, T., Marty, B., 2022. The end of the isotopic evolution of atmospheric xenon. Geochemical Perspectives Letters 20, 43-47.
[120] Liu, J.-Q., Chen, L.-H., Wang, X.-J., Zhang, X.-Y., Zeng, G., Erdmann, S., Murphy, D.T., Collerson, K.D., Komiya, T., Krmíček, L., 2022. Magnesium and zinc isotopic evidence for the involvement of recycled carbonates in the petrogenesis of Gaussberg lamproites, Antarctica. Chemical Geology 609, 121067.
[119] Igisu, M., Ueno, Y., Komiya, T., Awramik, S.M., Ikemoto, Y., Takai, K., 2022. Spatial distribution of organic functional groups in Ediacaran acritarchs from the Doushantuo Formation in South China as revealed by micro-FTIR spectroscopy. Precambrian Research 373, 106628.
[118] Tang, Q.-Q., Zheng, Y.-J., Qin, S., Wang, Y.-C., Yang, X.-g., Wang, X., Sun, J., Uesugi, K., Komiya, T., Han, J., 2022. New materials of multicellular algae from the earliest Cambrian Kuanchuanpu biota in South China. Acta Palaeontologica Polonica 67, 317-327.
[117] Wang, X., Vannier, J., Yang, X., Leclère, L., Ou, Q., Song, X., Komiya, T., Han, J., 2022. Muscle systems and motility of early animals highlighted by cnidarians from the basal Cambrian. eLife 11, e74716.
[116] Safonova, I., Perfilova, A., Obut, O., Kotler, P., Aoki, S., Komiya, T., Wang, B. & Sun, M., 2021, Traces of intra‑oceanic arcs recorded in sandstones of eastern Kazakhstan: implications from U–Pb detrital zircon ages, geochemistry, and Nd–Hf isotopes. International Journal of Earth Sciences https://doi.org/10.1007/s00531-021-02059-z.
[115] Zheng, Y., Tang, Q., Liu, P., Sun, J., Yao, X., Hao, W., Yang, X., Guo, J., Uesugi, K., Komiya, T. & Han, J., 2021, Characterization of the multicellular membrane-bearing algae From the Kuanchuanpu Biota (Cambrian: Terreneuvian). Journal of Geophysical Research: Biogeosciences 126, e2020JG006102.
[114] Yoshida, S., Ishikawa, A., Aoki, S. & Komiya, T., 2021, Occurrence and chemical composition of the Eoarchean carbonate rocks of the Nulliak supracrustal rocks in the Saglek Block of northeastern Labrador, Canada. Island Arc 30, e12381.
[113] Wang, X., Vannier, J., Yang, X., Kubota, S., Ou, Q., Yao, X., Uesugi, K., Sasaki, O., Komiya, T. & Han, J., 2020, An intermediate type of medusa from the early Cambrian Kuanchuanpu Formation, South China. Palaeontology 63, 775-789.
[112] Nakamura, H., Sano, A., Kagami, S., Yokoyama, T., Ishikawa, A., Komiya, T. & Iwamori, H., 2020, Compositional heterogeneity of Archean mantle estimated from Sr and Nd isotopic systematics of basaltic rocks from North Pole, Australia, and the Isua supracrustal belt, Greenland. Precambrian Research 347, 105803.
[111] Kuibida, M.L., Murzin, O.V., Kruk, N.N., Safonova, I.Y., Sun, M., Komiya, T., Wong, J., Aoki, S., Murzina, N.M., Nikolaeva, I., Semenova, D.V., Khlestov, M., Shelepaev, R.A., Kotler, P.D., Yakovlev, V.A. & Naryzhnova, A.V., 2019, Whole-rock geochemistry and U-Pb ages of Devonian bimodal-type rhyolites from the Rudny Altai, Russia: Petrogenesis and tectonic settings. Gondwana Research, 81, 312 - 338.
[110] Wang, D., Vannier, J., Schumann, I., Wang, X., Yang, X.-G., Komiya, T., Uesugi, K., Sun, J., Han, J., 2019. Origin of ecdysis: fossil evidence from 535-million-year-old scalidophoran worms. Proceedings of the Royal Society B: Biological Sciences 286, 20190791.
[109] Kubida, M.L., Timkin, V.I., Krivchikov, V.A., Murzin, O.V., Krupchatnikov, V.I., Popova, O.M., Kruk, N., Rudnev, S.N., Kuibida, Y.V., Shokal’sky, S.P., Gusev, N.I., Komiya, T., Aoki, S., Sun, M., Naryzhnova, A.V., 2019. Middle paleozoic rhyolite of Gorny and Rudny Altai: geochronology and composition characteristics. Doklady Akademii Nauk 487, 532-537.
[109] Kruk, N.N., Gvozdev, V.I., Orekhov, A.A., Kruk, E.A., Kasatkin, S.A., Golozubov, V.V., Rudnev, S.N., Aoki, S., Komiya, T., Kovach, V.P. & Serov, P.A., 2019, Early Cretaceous granitic and monzonitic rocks of the southern part of the Zhuravlevka Terrane (Sikhote-Alin): Geochemical composition and melt sources. Russian Journal of Pacific Geology, 13, 220-238.
[108] Igisu, N., Komiya, T., Awramik, S.M., Ikemoto, Y., Gen, Y., Uehara, H. & Takai, K., 2019, Micro-FTIR spectroscopic characterization of Neoproterozoic organic microfossils from the Fifteenmile Group in Yukon, Canada. Island Arc, 28, e12310, https://doi.org/10.1111/jar.12310.
[107] Nishizawa, M., Tsuchiya, Y., Du, W., Sawaki, Y., Matsui, Y., Wang, Y., Han, J. & Komiya, T., 2019, Shift in limiting nutrients in the late Ediacaran–early Cambrian marine systems of South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 530, 281-299.
[106] Safonova, I., Komiya, T., Romer, R.L., Simonov, V., Seltmann, R., Rudnev, S., Yamamoto, S. & Sun, M., 2018, Supra-subduction igneous formations of the Char ophiolite belt, East Kazakhstan. Gondwana Research 59, 159-179.
[105] Saito, T., Qiu, H.-N., Shibuya, T., Li, Y.-B., Kitajima, K., Yamamoto, S., Ueda, H., Komiya, T. & Maruyama, S., 2018, Ar–Ar dating for hydrothermal quartz from the 2.4 Ga Ongeluk Formation, South Africa: implications for seafloor hydrothermal circulation. Royal Society Open Science 5, 180260, doi.180210.181098/rsos.180260.
[104] Kato, D., Aoki, K., Komiya, T., Yamamoto, S., Sawaki, Y., Asanuma, H., Sato, T., Tsuchiya, Y., Shozugawa, K., Matsuo, M., & Windley, B. F., 2018. Constraints on the P–T conditions of high-pressure metamorphic rocks from the Inyoni shear zone in the mid-Archean Barberton Greenstone Belt, South Africa. Precambrian Research, 315, 1-18.
[103] Komiya, T., 2018, Precambrian Geochemistry, In: White, W. M. (Ed.), Encyclopedia of Geochemistry: A Comprehensive Reference Source on the Chemistry of the Earth (Encyclopedia of Earth Sciences Series), Springer, 1258-1265.
[102] Aoki, S., Morinaga, C., Kato, Y., Hirata, T., & Komiya, T., 2018. Influence of contamination on banded iron formations in the Isua supracrustal belt, West Greenland: Reevaluation of the Eoarchean seawater compositions. Geoscience Frontiers, 9, 1049-1072.
[101] Han, J., Li, G., Wang, X., Yang, X., Guo, J., Sasaki, O., Komiya, T., 2017. Olivooides-like tube aperture in early Cambrian carinachitids (Medusozoa, Cnidaria). Journal of Paleontology, 92, 3-13.
[100] Sawaki, Y., Tahata, M., Komiya, T., Hirata, T., Han, J., & Shu, D., Redox history of the Three Gorges region during the Ediacaran and Early Cambrian as indicated by the Fe isotope. Geoscience Frontiers, 9, 155-172.
[99] Tashiro, T., Ishida, A., Hori, M., Igisu, M., Koike, M., Méjean, P., Takahata, N., Sano, Y. and Komiya, T., 2017. Early trace of life from 3.95 Ga sedimentary rocks in Labrador, Canada. Nature 549, 516-518.
[98] Shibuya, T., Komiya, T., Takai, Ke., Maruyama, S., Russell, M. J., 2017. Weak hydrothermal carbonation of the Ongeluk volcanics; evidence for low CO2 concentrations in seawater and atmosphere during the Paleoproterozoic global glaciation, Progress in Earth and Planetary Science, 4, 31, doi.10.1186/s40645-017-0145-6.
[97] Ishikawa, A., Suzuki, K., Collerson, K.D., Liu, J., Pearson, D.G., Komiya, T., 2017. Rhenium-osmium isotopes and highly siderophile elements in ultramafic rocks from the Eoarchean Saglek Block, northern Labrador, Canada: implications for Archean mantle evolution. Geochimica et Cosmochimica Acta, 216, 286-311.
[96] Wang, X., Han, J., Vannier, J., Ou, Q., Yang, X., Uesugi, K., Sasaki, O., Komiya, T., 2017. Anatomy and affinities of a new 535-million-year-old medusozoan from the Kuanchuanpu Formation, South China. Palaeontology, 60, 853-867.
[95] Igisu, M., Komiya, T., Ikemoto, Y., Geng, Y. & Uehara, H., 2017, Studying microscale distributions of aliphatic C-H bonds in Neoproterozoic prokaryotic fossils using SR micro-FTIR. Geochemical Journal, 51, 589-594.
[94] Yang, X.-g., Han, J., Wang, X., Schiffbauer, J.D., Uesugi, K., Sasaki, O. & Komiya, T., 2017, Euendoliths versus ambient inclusion trails from Early Cambrian Kuanchuanpu Formation, South China. Palaeogeography, Palaeoclimatology, Palaeoecology 476, 147-157.
[93] Han, J., Cai, Y., Schiffbauer, J. D., Hua, H., Wang, X., Yang, X.-G., Uesuigi, K., Komiya, T., & Sun, J., 2017. A Cloudina-like fossil with evidence of asexual reproduction from the lowest Cambrian, South China. Geological Magazine, 154, 1294-1305.
[92] Du, W., Wang, X. L., Komiya, T., Zhao, R. & Wang, Y., 2017. Dendroid multicellular thallophytes preserved in a Neoproterozoic black phosphorite in southern China. Alcheringa: An Australasian Journal of Palaeontology, 41, 1-11.
[91] Komiya, T., Yamamoto, S., Aoki, S., Koshida, K., Shimojo, M., Sawaki, Y., Aoki, K., Sakata, S., Yokoyama, D.T., Maki, K., Ishikawa, A., Hirata, T., & Collerson, K.D., 2017. A prolonged granitoid formation in Saglek Block, Labrador: Zonal growth and crustal reworking of continental crust in the Eoarchean. Geoscience Frontiers, 8, 355-385.
[90] Saito, T., Shibuya, T., Komiya, T., Kitajima, K., Yamamoto, S., Nishizawa, M., Ueno, Y., Kurosawa, M. & Maruyama, S. 2016. PIXE and microthermometric analyses of fluid inclusions in hydrothermal quartz from the 2.2 Ga Ongeluk Formation, South Africa: Implications for ancient seawater salinity. Precambrian Research, 286, 337-351.
[89] Shimojo, M., Yamamoto, S., Sakata, S., Yokoyama, T. D., Maki, K., Sawaki, Y., Ishikawa, A., Aoki, K., Aoki, S., Koshida, K., Tashiro, T., Hirata, T., Collerson, K. D. & Komiya, T., 2016. Occurrence and geochronology of the Eoarchean, ~3.9 Ga, Iqaluk Gneiss in the Saglek Block, northern Labrador, Canada: Evidence for the oldest supracrustal rocks in the world. Precambrian Research, 278, 218-243.
[88] Koshida, K., Ishikawa, A., Iwamori, H., & Komiya, T., 2016. Petrology and geochemistry of mafic rocks in the Acasta Gneiss Complex: Implications for the oldest mafic rocks and their origin. Precambrian Research, 283, 190-207.
[87] Han, J., Zhang, X., & Komiya, T., 2016. Integrated evolution of cnidarians and oceanic geochemistry before and during the Cambrian explosion. In: Goffredo, S., Dubinsky, Z. (Eds.), The Cnidaria, past, present and future: The world of Medusa and her sisters, Springer, Cham, 15-29.
[86] Han, J., Li, G., Kubota, Shin, Ou, Q., Toshino, S., Wang, X., Yang, X., Uesugi, K., Hoshino, M., Sasaki, O., Kano, H., Sato, T., & Komiya, T., 2016. Internal microanatomy and zoological affinity of the early Cambrian Olivooides. Acta Geological Sinica (English edition) 90, 801-840.
[85] Safonova, I., Maruyama, S., Kojima, S., Komiya, T., Krivonogov, S., & Koshida, K., 2016. Recognizing OIB and MORB in accretionary complexes: A new approach based on ocean plate stratigraphy, petrology and geochemistry.Gondwana Research, 33, 92-114.
[84] Sato, H., Tahata, M., Sawaki, Y., Maruyama, S., Yoshida, N., Shu, D., Han, J., Li, Y., & Komiya, T., 2016. A high-resolution chemostratigraphy of post-Marinoan Cap Carbonate using drill core samples in the Three Gorges area, South Chin. Geoscience Frontiers, 7, 663-671.
[83] Han, J., Kubota, S., Li, G., Ou, Q., Wang, X., Yao, X., Li, Y., Uesugi, K., Hoshino, M., Sasaki, O., Kano, H., Sato, T. & Komiya, T., 2016. Divergent evolution of medusozoan symmetric patterns: Evidence from the microanatomy of Cambrian tetramerous cubozoans from South China. Gondwana Research, 31, 150-163.
[82] Komiya, T., Yamamoto, S., Shogo, A., Sawaki, Y., Ishikawa, A., Tashiro, T., Koshida, K., Shimojo, M., Aoki, Kazumasa, & Collerson, K. D., 2015. Geology of the Eoarchean, > 3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, northern Labrador, Canada: The oldest geological evidence for plate tectonics. Tectonophysics, 662, 40-66.
[81] Arai, T., Omori, S. Komiya, T., & Maruyama, S., 2015. Intermediate P/T-type regional metamorphism of the Isua Supracrustal Belt, southern west Greenland: The oldest Pacific-type orogenic belt?. Tectonophysics, 662, 22-39.
[80] Yoshiya, K., Sawaki, Y., Shibuya, T., Yamamoto, S., Komiya, T., Hirata, T., & Maruyama, S., 2015. In-situ iron isotope analyses of pyrites from 3.5 to 3.2 Ga sedimentary rocks of the Barberton Greenstone Belt, Kaapvaal Craton. Chemical Geology, 403, 58-73.
[79] Tahata, M., Sawaki, Y., Yoshiya, K., Nishizawa, M., Komiya, T., Hirata, T., Yoshida, N., Maruyama, S., & Windley, B.F., 2015. The Marine Environments encompassing the Neoproterozoic glaciations: Evidence from C, Sr and Fe isotope ratios in the Hecla Hoek Supergroup in Svalbard. Precambrian Research, 263, 19-42.
[78] Kendall, B., Komiya, T., Lyon, T.W., Bate, S.M., Gordon, G.W., Romaniello, S., Jiang, G., Creaser, R.A., Xiao, S., McFadden, K., Sawaki, Y., Tahata, M., Shu, D., Han, J., Li, Y., Chu, X. & Anbar, A.D., 2014, Uranium and molybdenum isotope evidence for widespread ocean oxygenation during the late Ediacaran Period. Geochimica et Cosmochimica Acta, 156, 173-193.
[77] Yoshiya, K., Sawaki, Y., Hirata, T., Maruyama, S. & Komiya, T., In-situ iron isotope analysis of pyrites in ~ 3.7 Ga sedimentary protoliths from the Isua supracrustal belt, southern West Greenland. Chemical Geology, 401, 126-139.
[76] Wang, Y., Du, W., Komiya, T., Wang, Y. & Wang, X.L., 2015, Macroorganism paleoecosystems during the middle-late Ediacaran Period in the Yangtze Block, South China. Paleontological Research, 19, 237-250.
[75] Popov, N. V., Safonova, I. Yu., Postnikov, A. A., Terleev, A. A., Komiya, T, Tokarev. D. A., Paleoproterozoic Granitoids from the Basement of the central Siberian Platform (Borehole Mogdinskaya-6): U–Pb Age and Composition. Doklady Earth Sciences, 461, 334-338.
[74] Usui, Y., Shibuya, T., Sawaki, Y., Komiya, T., 2015, Rock magnetism of tiny exsolved magnetite in plagioclase from a Paleoarchean granitoid in the Pilbara Craton, Geochemistry Geophysics Geosystems, 16, 112–125, doi:10.1002/ 2014GC005508.
[73] Tahata, M., Sawaki, Y., Ueno, Y., Nishizawa, M., Yoshida, N., Ebisuzaki, T., Komiya, T. & Maruyama, S., 2015, Three-step modernization of the ocean: Modeling of carbon cycles and the revolution of ecological systems in the Ediacaran/Cambrian periods. Geoscience Frontiers, 6, 121-136.
[72] Du, W., Wang, X.L. & Komiya, T., 2015, The Ediacaran analogues of sponge gemmule from the Yangtze Gorges area in South China. Gondwana Research, 28, 1246-1254.
[71] Sano, Y., Toyoshima, K., Ishida, A., Shirai, K., Takahata, N., Sato, T. & Komiya, T., 2014, Ion microprobe U-Pb dating and Sr isotope measurement of a protoconodont. Journal of Asian Earth Sciences, 92, 10-17.
[70] Kikumoto, R., Tahata, M., Nishizawa, M., Sawaki, Y., Maruyama, S., Shu, D., Han, J., Komiya, T., Takai, K. Ueno, Y., 2013. Nitrogen isotope chemostratigraphy of the Ediacaran and Early Cambrian platform sequence at Three Gorges, South China. Gondwana Research in press.
[69] Sawaki, Y., Tahata, M., Ohno, T., Komiya, T., Hirata, T., Maruyama, S., Han, J., Shu, D., 2013. The anomalous Ca cycle in the Ediacaran ocean: Evidence from Ca isotopes preserved in carbonates in the Three Gorges area, South China. Gondwana Research 25, 1070-1089.
[68] Duan, Y., Han, J., Fu, D., Zhang, X., Yang, X., Komiya, T., Shu, D., 2014. Reproductive strategy of the bradoriid arthropod Kunmingella douvillei from the Lower Cambrian Chengjiang Lagerstätte, South China. Gondwana Research, 25, 983-990.
[67] Okada, Y., Sawaki, Y., Komiya, T., Hirata, T., Takahata, N., Sano, Y., Han, J., Maruyama, S., 2013. New chronological constraints for Cryogenian to Cambrian rocks in the Three Gorges, Weng'an and Chengjiang areas, South China. Gondwana Research, 25, 1027-1044.
[66] Igisu, M., Komiya, T., Kawashima, M., Nakashima, S., Ueno, Y., Han, J., Shu, D., Li, Y., Guo, J., Maruyama, S. Takai, K., 2013. FTIR microspectroscopy of Ediacaran phosphatized microfossils from the Doushantuo Formation, Weng'an, South China. Gondwana Research, 25, 1120-1138.
[65]Shimura, T., Kon, Y., Sawaki, Y., Hirata, T., Han, J., Shu, D. & Komiya, T. 2013. In-situ analyses of phosphorus contents of carbonate minerals: Reconstruction of phosphorus contents of seawater from the Ediacaran to early Cambrian. Gondwana Research, 25, 1090-1107.
[64] Yamada, K., Ueno, Y., Yamada, K., Komiya, T., Han, J., Shu, D., Yoshida, N. and Maruyama, S. 2013. Molecular fossils extracted from the Early Cambrian section in the Three Gorges area, South China. Gondwana Research, 25, 1108-1119.
[63] Ishikawa, T., Ueno, Y., Shu, D., Li, Y., Han, J., Guo, J., Yoshida, N., Maruyama, S. and Komiya, T. 2013. The δ13C excursions spanning the Cambrian explosion to the Canglangpuian mass extinction in the Three Gorges area, South China. Gondwana Research, 25,1045-1056.
[62] Han, J., Kubota, S., Li, G., Yao, X., Yang, X., Shu, D., Li, Y., Kinoshita, S., Sasaki, O., Komiya, T., Yan, G., 2013. Early Cambrian pentamerous cubozoan embryos from South China. PloS One, 8, e70741
[61] Shibuya, T., Tahata, M., Ueno, Y., Komiya, T., Takai, K., Yoshida, N., Maruyama, S. & Russell, M. J. 2013. Decrease of seawater CO2 concentration in the Late Archean: An implication from 2.6 Ga seafloor hydrothermal alteration. Precambrian Research, 236, 59-64.
[60] Rumble, D., Bowring, S., Iizuka, T., Komiya, T., Lepland, A., Rosing, M. T. and Ueno, Y. 2013. The oxygen isotope composition of Earth’s oldest rocks and evidence of a terrestrial magma ocean. Geochemistry, Geophysics, Geosystems-G3, 14, 1929–1939, doi:1910.1002/ggge.20128.
[59] Kon, Y., Komiya, T., Anma, R., Hirata, T., Shibuya, T., Yamamoto, S. Maruyama, S., 2013. Petrogenesis of the ridge subduction-related granitoids from the Taitao Peninsula, Chile Triple Junction Area. Geochemical Journal 47, 167-183.
[58] Yamamoto, S., Komiya, T., Yamamoto, H., Kaneko, Y., Terabayashi, M., Katayama, I., Iizuka, T., Maruyama, S., Yang, J., Kon, Y., Hirata, T., 2013. Recycled crustal zircons from podiform chromitites in the Luobusa ophiolite, southern Tibet. Island Arc, 22, 89-103.
[57] Sajeev, K., Windley, B. F., Hegner, E., Komiya, T., 2013, High-temperature, high-pressure granulites (retrogressed eclogites) in the central region of the Lewisian, NW Scotland: Crustal-scale subduction in the Neoarchaean. Gondwana Research, 23, 526-538.
[56] Tahata, M., Ueno, Y., Ishikawa, T., Sawaki, Y., Murakami, K., Han, J., Shu, D., Li, Y., Guo, J., Yoshida, N., and Komiya, T., 2013. Carbon and oxygen isotope chemostratigraphies of the Yangtze platform, South China: Decoding temperature and environmental changes through the Ediacaran. Gondwana Research, 23, 333-353.
[55]  Ishikawa, T., Ueno, Y., Shu, D., Li, Y., Guo, J., Yoshida, N. Komiya, T., 2013. Irreversible change of the oceanic carbon cycle in the earliest Cambrian: high resolution organic and inorganic carbon chemostratigraphy in the Three Gorges area, South China. Precambrian Research, 225, 190-208.
[54] Yoshiya, K., Nishizawa, M., Sawaki, Y., Ueno, Y., Komiya, T., Yamada, K., Yoshida, N., Hirata, T., Wada, H., and Maruyama, S., 2012. In situ iron isotope analyses of pyrite and organic carbon isotope ratios in the Fortescue Group: Metabolic variations of a Late Archean ecosystem. Precambrian Research, 212-213, 169-193.
[53] Shibuya, T., Tahata, M., Kitajima, K., Ueno, Y., Komiya, T., Yamamoto, S., Igisu, M., Terabayashi, M., Sawaki, Y., Takai, K., Yoshida, N., Maruyama, S., 2012. Depth variation of carbon and oxygen isotopes of calcites in Archean altered upper oceanic crust: Implications for the CO2 flux from ocean to oceanic crust in the Archean. Earth and Planetary Science Letters, 321-322, 64-73.
[52] Komiya, T., 2011. Continental recycling and true continental growth. Russian Geology and Geophysics, 52, 1516-1529.
[51] Safonova, I.Y., Seltman, R., Kröner, A., Gladkochub, D., Schulmann, K., Xiao, W., Kim, J., Komiya, T., Sun, M., 2011. A new concept of continental construction in the Central Asian Orogenic Belt (compared to actualistic examples from the Western Pacific). Episodes 34, 186-196.
[50] Safonova, I.Y., Sennikov, N.V., Komiya, T., Bychkova, Y.V. Kurganskaya, E.V., 2011. Geochemical diversity in oceanic basalts hosted by the Zasur'ya accretionary complex, NW Russian Altai, Central Asia: Implications from trace elements and Nd isotopes. Journal of Asian Earth Sciences, 42, 191-207.
[49] Safonova, I.Y., Buslov, M.M., Simonov, V.A., Izokh, A.E., Komiya, T., Kurganskaya, E.V. Ohno, T., 2011. Geochemistry, petrogenesis and geodynamic origin of basalts from the Katun’ accretionary complex of Gorny Altai (southwestern Siberia). Russian Geology and Geophysics 52, 421-442.
[48] Katayama, I., Michibayashi, K., Terao, R., Ando, J.-i., Hidaka, H. Komiya, T., 2011. Water content in the mantle xenoliths from Kimberley and implication for textural variation in the cratonic roots. Geological Journal, 46, 173–182.
[47] Santosh, M., Maruyama, S., Komiya, T., Yamamoto, S., 2010. Orogens in the evolving Earth: from surface continents to ‘lost continents’ at the core–mantle boundary. In: Kusky, T.M., Zhai, M.-G. and Xiao, W. (Eds.), The evolving continents: Understanding processes of continental growth, Geological Society, London, Special Publications, 338. The Geological Society of London, pp. 77-116.
[46] Shibuya, T., Komiya, T., Nakamura, K., Takai, K., Maruyama, S., 2010, Highly alkaline, high-temperature hydrothermal fluids in the early Archean ocean., Precambrian Research, 182, 230-238.
[45] Sawaki, Y., Kawai, T., Shibuya, T., Tahata, M., Omori, S., Komiya, T., Yoshida, N., Hirata, T., Ohno, T., Windley, B.F. Maruyama, S., 2010. 87Sr/86Sr chemostratigraphy of Neoproterozoic Dalradian carbonates below the Port Askaig Glaciogenic Formation, Scotland. Precambrian Research, 170, 150-164.
[44] Iizuka, T., McCulloch, M.T., Komiya, T., Shibuya, T., Ohta, K., Ozawa, H., Sugimura, E. Collerson, K.D., 2010. Monazite geochronology and geochemistry of meta-sediments in the Narryer Gneiss Complex, Western Australia: Constraints on the tectonothermal history and provenance. Contributions to Mineralogy and Petrology, 160, 803-823.
[43] Shibuya, T., Aoki, K., Komiya, T., Maruyama, S., 2010. Stratigraphy-related, low-pressure metamorphism in the Hardey Syncline, Hamersley Province, Western Australia. Gondwana Research, 18, 213-221.
[42] Iizuka, T., Komiya, T., Rino, S., Maruyama, S. Hirata, T., 2010, Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth. Geochimica et Cosmochimica Acta, 74, 2450-2472.
[41] Nishizawa, M., Yamamoto, H., Ueno, Y., Tsuruoka, S., Shibuya, T., Sawaki, Y., Yamamoto, S., Kon, Y., Kitajima, K., Komiya, T., Maruyama, S. Hirata, T., 2010. Grain-scale iron isotopic distribution of pyrite from Precambrian shallow marine carbonate revealed by a femtosecond laser ablation multicollector ICP-MS technique: Possible proxy for the redox state of ancient seawater. Geochimica et Cosmochimica Acta, 74, 2760-2778.
[40] Sawaki, Y., Shibuya, T., Kawai, T., Komiya, T., Omori, S., Iizuka, T., Hirata, T., Windley, B.F. Maruyama, S., 2010. Imbricated ocean-plate stratigraphy and U-Pb zircon ages from tuff beds in cherts in the Ballantrae complex, SW Scotland. Geological Society of America Bulletin 122, 454-464.
[39] Sawaki, Y., Ohno, T., Tahata, M., Komiya, T., Hirata, T., Maruyama, S., Windley, B.F., Han, J., Shu, D. Li, Y., 2010. The Ediacaran radiogenic Sr isotope excursion in the Doushantuo Fm in the Three Gorges area, South China. Precambrian Research, 176, 46-64.
[38] Sajeev K., Jeong J., Kwon S., Weon-Seo Kee W.-S., Kim S.W., Komiya T., Itaya T., Jung H.-S., Park Y., 2010. High-pressure granulite relicts from the Imjingang belt, South Korea and its tectonic significance: Evolution of high P-T granulites from Imjingang belt, Korea: tectonic significance. Gondwana Research, 17, 75-86.
[37] Shimizu K., Shimizu N., Komiya T., Suzuki K., Maruyama S., Tatsumi Y., 2009. CO2-rich komatiitic melt inclusions in Cr-spinels within beach sand from Gorgona Island, Colombia. Earth and Planetary Science Letters, 288, 33-43.
[36] Schulte R.F., Schilling M., Horan M.F., Anma R., Komiya T., Farquhar J., Piccoli P.M., Pitcher L., Walker R.J., 2009. Chemical and chronologic complexity in the convecting upper mantle: Evidence from the Taitao Ophiolite, southern Chile. Geochimica et Cosmochimica Acta, 73, 5793-5819.
[35] Anma, R., Armstrong, R., Orihashi, Y., Ike, S.-i., Shin, K.-C., Kon, Y., Komiya, T., Ota, T., Kagashima, S.-i., Shibuya, T., Yamamoto, S., Veloso, E.E., Funning, M. Herve, F., 2009. Are the Taitao granites formed due to subduction of the Chile ridge? Lithos, 119, 246-258.
[34] Yamamoto, S., Komiya, T., Hirose, K. Maruyama, S., 2009. Coesite and clinopyroxene exsolution lamellae in chromites: In-situ ultrahigh-pressure evidence from podiform chromitites in the Luobusa ophiolite, southern Tibet. Lithos 109, 314-322.
[33] Katayama, I., Suyama, Y., Ando, J.-i. Komiya, T., 2009. Mineral chemistry and P-T condition of granular and sheared peridotite xenoliths from Kimberley, South Africa: Origin of the textural variation in the cratonic mantle. Lithos 109, 333-340.
[32] Iizuka, T., Komiya, T., Johnson, S.P., Kon, Y., Maruyama, S. Hirata, T., 2009. Reworking of Hadean crust in the Acasta gneisses, northwestern Canada: Evidence from in-situ Lu-Hf isotope analysis of zircon. Chemical Geology 259, 230-239.
[31] Guo, J.F., Li, Y., Han, J., Zhang, X.L., Zhang, Z.F., Ou, Q., Liu, J.N., Shu, D.G., Maruyama, S. Komiya, T., 2008. Fossil Association from the Lower Cambrian Yanjiahe Formation in the Yangtze Gorges Area, Hubei, South China. Acta Geologica Sinica-English Edition 82, 1124-1132.
[30] Sawaki, Y., Nishizawa, M., Suo, T., Komiya, T., Hirata, T., Takahata, N., Sano, Y., Han, J., Kon, Y., Maruyama, S., 2008. Internal structures and U–Pb ages of zircons from a tuff layer in the Meishucunian formation, Yunnan Province, South China. Gondwana Research, 14, 148-158.
[29] Sawaki, Y., Fukushi, Y., Ohno, T., Komiya, T., Ishikawa, T., Hirata, T., Maruyama, S., 2008. Sr isotope excursion around Precambrian-Cambrian boundary, in Three Gorge area, South China. Gondwana Research, 14, 134-147.
[28] Ohno, T., Komiya, T., Ueno, Y., Hirata, T., Maruyama, S., 2008. Determination of 88Sr/86Sr mass-dependent isotopic fractionation and radiogenic isotope variation of 87Sr/86Sr in the Neoproterozoic Doushantuo Formation. Gondwana Research, 14, 126-133.
[27] Komiya, T., Suga, A., Ohno, T., Han, J., Guo, J., Yamamoto, S., Hirata, T., Li, Y., 2008. Ca isotopic compositions of dolomite, phosphorite and the oldest animal embryo fossils from the Neoproterozoic in Weng’an, South China. Gondwana Research, 14, 209-218.
[26] Komiya, T., Hirata, T., Kitajima, K., Yamamoto, S., Shibuya, T., Sawaki, Y., Ishikawa, T., Shu, D., Li, Y., Han, J., 2008. Evolution of the composition of seawater through geologic time, and its influence on the evolution of life Gondwana Research, 14, 159-174.
[25]  Ishikawa, T., Ueno, Y., Komiya, T., Sawaki, Y., Han, J., Shu, D., Li, Y., Maruyama, S., Yoshida, N., 2008. Carbon isotope chemostratigraphy of a Precambrian/Cambrian boundary section in the Three Gorge area, South China: prominent global-scale isotope excursions just before the Cambrian Explosion. Gondwana Research, 14, 193-208.
[24]  Katayama, I., Komiya, T., Toriumi, M., 2008. Annealing time-scale of the cratonic lithosphere of southern Africa inferred from the shape of inclusion minerals. International Geology Review, 50, 84-88.
[23] Iizuka, T., Komiya, T., Maruyama, S.,2007. The early Archean Acasta Gneiss Complex: Geological, geochronological and isotopic studies and implications for early crustal evolution, In: Van Kranendonk, M.J., Smithies, H.M., Bennett, V., (Eds.), Earth’s Oldest Rocks. Elsevier, Amsterdam, 2007, pp. 127-147.
[22] Komiya, T., 2007, Material circulation through a time –Chemical differentiation within the mantle and secular variation of temperature and composition of the mantle-, in Yuen, D. A., S. Maruyama, S. Karato, and B. F. Windley, eds., Superplumes: Beyond Plate Tectonics, New York, Springer, p. 187-234.
[21] Yamamoto, H., Yamamoto, S., Kaneko, Y., Terabayashi, M., Komiya, T., Katayama, I., Iizuka, T., 2007. Imbricate structure of the Luobusa Ophiolite and surrounding rock units, southern Tibet. Journal of Asian Earth Sciences, 29, 296-304.
[20] Veloso, E. E., Anma, R., Ota, T., Komiya, T., Kagashima, S.-i., Yamazaki, T., 2007. Paleocurrent patterns of the sedimentary sequence of the Taitao ophiolite constrained by anisotropy of magnetic susceptibility and paleomagnetic analyses. Sedimentary Geology, 201, 446-460.
[19] Shibuya, T., Komiya, T., Anma, R., Ota, T., Omori, S., Kon, Y., Yamamoto, S., Maruyama, S., 2007. Progressive metamorphism of the Taitao ophiolite; evidence for axial and off-axis hydrothermal alterations. Lithos, 98, 233-260.
[18] Shibuya, T., Kitajima, K., Komiya, T., Terabayashi, M., Maruyama, S., 2007. Middle Archean ocean ridge hydrothermal metamorphism and alteration recorded in the Cleaverville area, Pilbara Craton, Western Australia. Journal of Metamorphic Geology, 25, 751-767.
[17] Komiya, T., Maruyama, S., 2007. A very hydrous mantle under the western Pacific region: implications for formation of marginal basins and style of Archean plate tectonics. Gondwana Research, 11, 132-147.
[16] Iizuka, T., Komiya, T., Ueno, Y., Katayama, I., Uehara, Y., Maruyama, S., Hirata, T., Johnson, S. P., Dunkley, D., 2007. Geology and zircon geochronology of the Acasta Gneiss Complex, northwestern Canada: new constraints on its tectonothermal history. Precambrian Research, 153, 179-208.
[15] Iizuka, T., Horie, K., Komiya, T., Maruyama, S., Hirata, T., Hidaka, H., Windley, B. F., 2006. Occurrence of a 4.2 Gyr old zircon in the Acasta Gneiss Complex of northwestern Canada. Geology, 34, 245-248.
[14] Terabayashi, M., Okamoto, K., Yamamoto, H., Kaneko, Y., Maruyama, S., Katayama, I., Komiya, T., Ota, T., Ozawa, H., Anma, R., Windley, B., Liou, J. G., 2005. Accretionary complex origin of the mafic-ultramafic bodies of the Sanbagawa belt, central Shikoku, Japan. International Geology Review, 47, 1058-1073.
[13] Nishizawa, M., Takahata, N., Terada, K., Komiya, T., Ueno, Y., Sano, Y., 2005. Rare earth element, lead, carbon and nitrogen geochemistry of apatite-bearing metasediments from ~3.8 Ga Isua supracrustal belt, West Greenland. International Geology Review, 47, 952-970.
[12] Iizuka, T., Hirata, T., Komiya, T., Rino, S., Katayama, I., Motoki, A., Maruyama, S., 2005. U-Pb and Lu-Hf isotope systematics of zircons from the Mississippi River sand: Implications for reworking and growth of continental crust. Geology, 33, 485-488.
[11] Yamamoto, H., Yamamoto, S., Kaneko, Y., Terabayashi, M., Komiya, T., Katayama, I., Iizuka, T., 2004. Imbricate structure of Luobusa ophiolite, southern Tibet (Extended abstracts). Himalayan Journal of Sciences, 2, 280.
[10] Rino, S., Komiya, T., Windley, B. F., Katayama, I., Motoki, A., Hirata, T., 2004. Major episodic increases of continental crustal growth determined from zircon ages of river sands; implications for mantle overturns in the Early Precambrian. Physics of the Earth and Planetary Interiors, 146, 369-394.
[9] Komiya, T., Maruyama, S., Hirata, T., Yurimoto, H., Nohda, S., 2004. Geochemistry of the oldest MORB and OIB in the Isua supracrustal belt (3.8 Ga), southern West Greenland: implications for the composition and temperature of early Archean upper mantle. The Island Arc, 13, 47-72.
[8] Komiya, T., 2004. Material circulation model including chemical differentiation within the mantle and secular variation of temperature and composition of the mantle. Physics of the Earth and Planetary Interiors, 146, 333-367.
[7] Ishikawa, A., Maruyama, S., Komiya, T., 2004. Layered lithospheric mantle beneath the Ontong Java Plateau: implications from xenoliths in Alnöite, Malaita, Solomon Islands. Jour. Petrol., 45, 2011-2044.
[6] Ueno, Y., Yurimoto, H., Yoshioka, H., Komiya, T., Maruyama, S., 2002. Ion microprobe analysis of graphite from ca. 3.8 Ga metamorphosed sediments, Isua Supracrustal Belt, West Greenland: Relationship between metamorphism and carbon isotopic composition. Geochimica et Cosmochimica Acta, 66, 1257-1268.
[5] Komiya, T., Maruyama, S., Hirata, T., Yurimoto, H., 2002. Petrology and geochemistry of MORB and OIB in the mid-Archean North Pole region, Pilbara craton, Western Australia: implications for the composition and temperature of the upper mantle at 3.5 Ga. International Geology Review, 44, 988-1016.
[4] Komiya, T., Hayashi, M., Maruyama, S., Yurimoto, H., 2002. Intermediate-P/T type Archean metamorphism of the Isua supracrustal belt: implications for secular change of geothermal gradients at subduction zones and for Archean plate tectonics. American Journal of Science, 302, 804-826.
[3] Shimizu, K., Komiya, T., Hirose, K., Shimizu, N., Maruyama, S., 2001. Cr-spinel, an excellent micro-container for retaining primitive melts-implications for a hydrous plume origin for komatiites. Earth and Planetary Science Letters, 189, 177-188.
[2] Hayashi, M., Komiya, T., Nakamura, Y., Maruyama, S., 2000. Archean regional metamorphism of the Isua supracrustal belt, southern West Greenland: implications for a driving force of Archean plate tectonics. International Geology Review, 42, 1055-1115.
[1] Komiya, T., Maruyama, S., Nohda, S., Masuda, T., Hayashi, M., Okamoto, S., 1999. Plate tectonics at 3.8 – 3.7 Ga; Field evidence from the Isua accretionary complex, southern West Greenland. Jour. Geol., 107, 515-554.




[12] 吉田聡, 小宮剛, 2018, ラブラドル・ヌリアック表成岩の炭酸塩岩の化学組成と炭質物の炭素同位体組成—地球最古の生命の痕跡と海水組成の推定—. 地学雑誌, 128, 597-623.


[11] 小宮剛, 青木翔吾, 吉田聡, 2018, カナダ,ラブラドル・ヌリアック表成岩類の地質と年代─地球最古の表成岩とプレートテクトニクスの証拠─. 地学雑誌, 127, 683-704.


[10] 山本啓司, 寺林優, 小宮剛, 2011. 四国中央部別子地域三波川帯の超マフィック層状岩体に認められる変形構造:ブーディンおよびデュープレックス様累重. 地質学雑誌, 117, No.4, VII-VIII.


[9] 小宮剛, 2007. 地球の海水組成と生命の進化46 億年. 地学雑誌, 116, 95-113.


[8] 飯田高弘, 田端寛和, 山本啓司, 小宮剛, 2004. 脆性-延性剪断帯の熱水変質作用:中央構造線沿いの断層岩類生成における元素移動性と熱水の起源に関する岩石学・地球化学. 日本大学文理学部紀要, 39, 285-302.


[7] 小宮剛, 2002. 中央海嶺玄武岩からマントルの温度を読む, In: 熊澤峰夫, 丸山茂徳, (Ed.), プルームテクトニクスと全地球史解読. 岩波書店, 東京, 2002, pp. 91-93.


[6] 小宮剛, 1998. 中央海嶺玄武岩からマントルの温度を読む. 科学, 68, 747-749.


[5] 小宮剛, 丸山茂徳, 1997. 太古代中央海嶺火成活動:太古代マントルの組成と温度の束縛条件. 火山特別号「マグマ学」, 42, S247-S258.


[4] 磯崎行雄, 寺林優, 椛島太郎, 角田地文, 恒松知樹, 鈴木良剛, 小宮剛, 丸山茂徳, 加藤泰浩, 1996. “35億年前最古のストロマトライト”の正体−西オーストラリア,ピルバラ産,太古代中央海嶺の熱水性堆積物−. 地球!生命と地球の共進化, 17, 476-481.
[3] 加藤泰浩, 木村進一, 小宮剛, 丸山茂徳, 1996. スペリオル型縞状鉄鉱層とバイオミネラリゼーション. 月刊地球, 18, 17-23.
[2] 丸山茂徳, 林衛, 中村保夫, 小宮剛, 1996. グリーンランド南西部の太古代広域変成作用−太古代の造山作用とは−. 地質ニュース, 497, 18-33.


[1] 小宮剛, 能田成, 丸山茂徳, 林衛, 1995. 世界最古の付加体 グリーンランド、イスア地域の地質−38億年前のプレートテクトニクス−. 地質ニュース, 489, 49-61.




[15]「地球・惑星・生命」7 最古の生命の痕跡を探る(小宮剛)東大出版会


[14]「図説 地球科学の事典(朝倉書店)監修(共著)」
[11~13] 「図説 地球科学の事典(朝倉書店)」
2.4 太古代〜原生代地質
2.8 固体地球と生命・表層環境(太古代)
4.10 地殻の化学構造と進化
[10]「理系に育てる基礎のキソ 地球のお話365日」(監修)(共著)


[7]「知のフィールドガイド 科学の最前線を歩く(東京大学教養学部編)」
246-257 地球と生命の共進化ー多細胞動物の出現とカンブリア爆発ー


63 地球生命の起源


[5] milsil, 2013 No. 5, 特集水の惑星『地球』: 系外惑星と水・生命


[2~4] 「地球と宇宙の化学辞典(日本地球化学会)」
1 地球史:カンブリア爆発
6 地殻:生命圏との相互作用
7 マントル・コア:マントルと地殻の分化


[1] 子ども科学技術白書 2011年度版 海の水はどうしてしょっぱいの? アドバイザーの一員

(4) その他